Bạn tự vẽ hình ik nha.
a) tg abd= tg aed: AB=AE; BAD=EAD; AD: cạnh chung
b) tg DBM= tg DEC: BẠN TỰ LÀM NHA DỄ LẮM
Bạn tự vẽ hình ik nha.
a) tg abd= tg aed: AB=AE; BAD=EAD; AD: cạnh chung
b) tg DBM= tg DEC: BẠN TỰ LÀM NHA DỄ LẮM
Bài 1. Cho tam giác ABC có AB<AC. Tia phân giác của góc BAC cắt BC ở D. Trên tia AC lấy E sao cho AE=AB. Gọi M là giao điểm của AB và DE. Chứng minh rằng
a) \(\Delta ABD=\Delta AED\)
b) \(\Delta DBM=\Delta DEC\)
Bài 1. Cho tam giác ABC có AB<AC . Tia phân giác \(\widehat{BAC}\) của cắt BC ở D. Trên tia AC lấy E sao cho AE=AB . Giọi M là giao điểm của AB và DE. Chứng minh rằng \(\Delta DBM=\Delta DEC\)
cho tam giác ABC (AB<AC).Tia phân giác góc BAC cắt BC ở D. Trên tia AC lấy điểm E sao cho AE=AB.Gọi M là giao điểm của AB và DE.Chứng minh rằng :
a, tam giác ABD=AED
b, tam giác DBM=DEC
Cho \(\Delta ABC\) nhọn, \(AB< AC\) , tia phân giác của \(\widehat{BAC}\) cắt cạnh \(BC\) tại \(E\). Trên cạnh \(AC\) lấy điểm \(F\) sao cho \(AF=AB\).
a) Chứng minh: \(\Delta AEB=\Delta AEF\)
b) M là giao điểm của BF và AE. Chứng minh: MB = MC, AE \(\perp\) BF tại M
c) Trên tia AB lấy điểm D sao cho AD = AC. Gọi K là trung điểm của CD. Chứng minh: 3 điểm A, E, K thẳng hàng.
Cho tam giác nhọn ABC,AB<AC.Tia p/g \(\widehat{BAC}\) cắt BC tại D.Trên cạnh AC lấy điểm E sao cho AE=AB,tia ED cắt AB tại M
a)Chứng minh:\(\Delta\)ABD=\(\Delta\)AED
b)Chứng minh:AM=AC và AD là đường trung trực của đoạn thẳng MC
c)Chứng minh: BD<DC
d)\(\Delta\)ABC cần có thêm điều kiện gì?Thì tam giác AME cân?
Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :
b )\(\Delta ABD=\Delta ACE\) a ) AM vuông góc với BC
c )\(\Delta ACD=\Delta ABE\) d ) AM là tia phân giác của góc DAE
Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE
b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .
c ) Chứng minh \(\Delta KBE=\Delta CEB\)
d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .
Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :
a ) AP = QF
b ) \(\Delta APQ=\Delta QFC\)
c ) Q là trung điểm của AC
d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB
Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC
. b ) Chứng minh AD // BC .
c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .
Mình đang cần gấp ạ
Cho \(\Delta ABC\)có AB < AC. Kẻ tia phân giác AD của \(\widehat{BAC}\)(D \(\in\)BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a) \(\Delta ABD=\Delta AED\)
b) AD \(\perp\)FC
c) \(\Delta BDF=\Delta EDC\)và BF = EC
d) F, D, E thẳng hàng
Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB
a) Chứng minh: DB=DM
b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)
c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng
Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE
a) Chứng minh: DA=DE
b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)
c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng
Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))
a) Chứng minh: HB=HC
b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân
Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)
a) Chứng minh: \(\Delta ABD=\Delta AED;\)
b) BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao điểm của hai đường thẳng AB và ED Chứng minh BF=EC
Cho \(\Delta ABC\)có AB=AC và BC<AB. Gọi M là trung điểm của BC.
a) Chứng minh \(\Delta ABM=\Delta ACM\)và AM là tia phân giác của góc BAC
b) Trên cạnh AB lấy điểm D sao cho CB=CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. CHứng minh CN\(\perp\)BD.
c) Trên tia đối của tia CA lấy điểm E sao cho AD=CE. CHứng minh BE-CE=2BN