a: u1=3-1=2
u2=6-1=5
u3=9-1=8
u4=12-1=11
u5=15-1=14
b: \(u_{n+1}-u_n=3\left(n+1\right)-1-3n+1\)
=3n+3-3n
=3>0
=>Đây là dãy số tăng
a: u1=3-1=2
u2=6-1=5
u3=9-1=8
u4=12-1=11
u5=15-1=14
b: \(u_{n+1}-u_n=3\left(n+1\right)-1-3n+1\)
=3n+3-3n
=3>0
=>Đây là dãy số tăng
1) cho dãy số \(\left(u_n\right)\) xác định bởi \(u_n=n^2-1\)
a) tính \(u_1,u_2,u_3,u_4\)
b) 99 là số hạng thứ mấy của dãy
2) cho dãy số \(\left(u_n\right)\) xác định bởi \(u_n=\dfrac{2n-1}{n+1}\)
a) tính \(u_1,u_2,u_3,u_4\)
b) \(\dfrac{13}{7}\) là số hạng thứ mấy của dãy
1) cho dãy số \(\left(u_n\right)\) xác định bởi \(u_n=n^2+1\)
a) tính \(u_1,u_2,u_3,u_4\)
b) 101 là số hạng thứ mấy của dãy
2) cho dãy số \(\left(u_n\right)\) xác định bởi \(u_n=\dfrac{n+1}{2n-1}\)
a) tính \(u_1,u_2,u_3,u_4\)
b) \(\dfrac{31}{59}\) là số hạng thứ mấy của dãy
1) cho cấp số cộng \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_2=4\\u_4=10\end{matrix}\right.\) tính tổng của 10 số hạng đầu tiên cấp số cộng
2) cho cấp số cộng \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_3=6\\u_5=16\end{matrix}\right.\) tính tổng của 12 số hạng đầu tiên cấp số cộng
tính số hạng đầu và công bội q của 1 cấp số nhân biết
a) \(\left\{{}\begin{matrix}u_5-u_1=15\\u_4-u_2=6\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_1-u_3+u_5=65\\u_1+u_7=325\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}u_4+u_6=-540\\u_2+u_4=-60\end{matrix}\right.\)
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2048\) và \(q=\dfrac{5}{4}\) tính \(S_8=u_1+u_2+u_3...+u_8\)
2) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=-3\) và \(q=\dfrac{1}{2}\) tính \(S_1=u_1+u_2+u_3...+u_9+u_{10}\)
1) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=6\) và d = -2. Tính \(S_{99}=u_1+u_2+u_3...+u_{99}\)
2) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=-2\) và d = 4. Tính \(S_{100}=u_1+u_2+u_3...+u_{99}+u_{100}\)
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2048\) và \(q=\dfrac{5}{4}\) tính \(S_8=u_1+u_2+u_3...+u_8\)
2) cho cấp số nhân \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_1=-1\\u_2=3\end{matrix}\right.\) tính tổng 10 số hạng đầu tiên của cấp số nhân
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{u_n+2},n\ge1\end{matrix}\right.\). Tính \(\lim\limits_{u_n}\)
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=-3\) và \(q=\dfrac{1}{2}\) tính \(S_{10}=u_1+u_2+u_3...u_9+u_{10}\)
2) cho cấp số nhân \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_1=6\\u_2=18\end{matrix}\right.\) tính tổng của 12 số hạng đầu tiên của cấp số nhân