Cho ΔABC vuông tại A có đường cao AH.AB=2;AC=3CH.Diện tích ΔABC bằng
A.\(\dfrac{\sqrt{2}}{2}\) B.\(2\sqrt{2}\) C.\(\dfrac{3\sqrt{3}}{2}\) D.\(3\sqrt{3}\)
Cho ΔABC vuông tại A có đường cao AH.Biết AB=6cm và AC=2AH.Khi đó tỉ số \(\dfrac{AC}{BC}\) bằng
A.\(\dfrac{\sqrt{3}}{4}\) B.\(\dfrac{3}{2}\) C.\(\dfrac{\sqrt{3}}{2}\) D.\(\dfrac{1}{2}\)
Giải thích giúp em tại sao với ạ
Cho ΔABC có ba góc nhọn biết AB=4cm và gócC=300 .Đường tròn tâm O đường kính AB cắt các cạnh CA,CB lần lượt tại F và E.Độ dài đoạn thẳng FE bằng
A.2\(\sqrt{3}\)cm B.\(4\sqrt{3}cm\) C.\(\sqrt{3}cm\) D.4cm
Câu 80**: Tam giác ABC có Â = 1200 , AB = AC, BC = 12 . Độ dài đường cao AH là:
A. \(\sqrt{3}\); B . \(\dfrac{\sqrt{3}+1}{2}\) ; C . \(\dfrac{2+\sqrt{3}}{2}\); D.\(2\sqrt{3}\) .
Cho ΔABC cân tại A,I là giao điểm của hai đường phân giác trong.Biết IB=3;IA=\(3\sqrt{6}\).Độ dài cạnh AB là
A.\(5\sqrt{3}\) B.\(\dfrac{3\sqrt{17}}{2}\) C.\(3\sqrt{19}\) D.3\(\sqrt{10}\)
Cho ΔABC vuông tại A thỏa mãn \(BC^2=\left(\sqrt{3}+1\right).AC^2+\left(\sqrt{3}-1\right).AB.AC\).Tính số đo góc ACB
A.450 B.150 C.600 D.300
Câu 80**: Tam giác ABC có Â = 1200 , AB = AC, BC = 12 . Độ dài đường cao AH là:
A. √3; B \(\dfrac{\sqrt{3}+1}{2}\). ; C \(\dfrac{2+\sqrt{3}}{2}\).; D\(2\sqrt{3}\). .
giải hộ mik với
Cho ΔABC vuông tại A có AB=5;AC=4.Bán kính đường tròn qua A và tiếp xúc với BC tại B bằng
A.\(\dfrac{5}{4}\sqrt{41}\) B.\(\dfrac{5}{2}\sqrt{41}\) C.\(\sqrt{41}\) D.\(\dfrac{5}{8}\sqrt{41}\)
cho tam giác ABC vuông tại A có AB=c,Ac=b, đường cao AH.từ H kẻ HD vuông góc với b tại D, HE vuông góc với AC tại E.chưng minh BD=BC.cos^3B.từ đó suy ra \(\sqrt[3]{BD^2}+\sqrt[3]{CE^2}=\sqrt[3]{BC^2}\)