Xét \(\Delta OAB\&\Delta OMN:\)
\(\dfrac{OA}{OM}=\dfrac{OB}{ON}=\dfrac{3}{2}\left(gt\right)\)
mà \(\widehat{OAB}=\widehat{OMN}\left(góc.chung\right)\)
\(\Rightarrow\Delta OAB\approx\Delta OMN\left(c.g.c\right)\)\(\Rightarrow\dfrac{AB}{MN}=\dfrac{OA}{OM}=\dfrac{3}{2}\left(1\right)\)
Chứng minh tương tự ta có :
\(\Delta OBC\approx\Delta ONP\left(c.g.c\right)\Rightarrow\dfrac{BC}{NP}=\dfrac{OP}{ON}=\dfrac{3}{2}\left(2\right)\)
\(\Delta OCA\approx\Delta OPM\left(c.g.c\right)\Rightarrow\dfrac{CA}{PM}=\dfrac{OC}{OP}=\dfrac{3}{2}\left(3\right)\)
\(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{CA}{PM}=\dfrac{3}{2}\)
\(\Rightarrow\Delta ABC\approx\Delta MNP\left(c.c.c\right)\)
\(\Rightarrowđpcm\)