a) Thu gọn và sắp xếp:
\(P\left(x\right)=4x^5-3x^2+3x-2x^3-4x^5+x^4-5x+1+4x^2\)
\(=\left(4x^5-4x^5\right)+x^4-2x^3+\left(-3x^2+4x^2\right)+\left(3x-5x\right)+1\)
\(=x^4-2x^3+x^2-2x+1\)
\(Q\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)
\(=\left(x^7-x^7\right)+\left(-2x^6+2x^6\right)+\left(x^5-x^5\right)+\left(-2x^4+2x^4\right)+2x^3-x+5\)
\(=2x^3-x+5\)
b) Tổng: \(P\left(x\right)+Q\left(x\right)\)
\(=\left(x^4-2x^3+x^2-2x+1\right)+\left(2x^3-x+5\right)\)
\(=x^4-2x^3+x^2-2x+1+2x^3-x+5\)
\(=x^4+\left(-2x^3+2x^3\right)+x^2+\left(-2x-x\right)+\left(1+5\right)\)
\(=x^4+x^2-3x+6\)
Hiệu: \(P\left(x\right)-Q\left(x\right)\)
\(=\left(x^4-2x^3+x^2-2x+1\right)-\left(2x^3-x+5\right)\)
\(=x^4-2x^3+x^2-2x+1-2x^3+x-5\)
\(=x^4+\left(-2x^3-2x^3\right)+x^2+\left(-2x+x\right)+\left(1-5\right)\)
\(=x^4-4x^3+x^2-x-4\)
a) P(x) = 4x⁵ - 3x² + 3x - 2x³ - 4x⁵ + x⁴ - 5x + 1 + 4x²
= (4x⁵ - 4x⁵) + x⁴ - 2x³ + (-3x² + 4x²) + (3x - 5x) + 1
= x⁴ - 2x³ + x² - 2x + 1
Q(x) = x⁷ - 2x⁶ + 2x³ - 2x⁴ - x⁷ + x⁵ + 2x⁶ - x + 5 + 2x⁴ - x⁵
= (x⁷ - x⁷) + (-2x⁶ + 2x⁶) + (x⁵ - x⁵) + (-2x⁴ + 2x⁴) + 2x³ - x + 5
= 2x³ - x + 5
b) P(x) + Q(x) = (x⁴ - 2x³ + x² - 2x + 1) + (2x³ - x + 5)
= x⁴ - 2x³ + x² - 2x + 1 + 2x³ - x + 5
= x⁴ + (-2x³ + 2x³) + x² + (-2x - x) + (1 + 5)
= x⁴ + x² - 3x + 6
P(x) - Q(x) = (x⁴ - 2x³ + x² - 2x + 1) - (2x³ - x + 5)
= x⁴ - 2x³ + x² - 2x + 1 - 2x³ + x - 5
= x⁴ + (-2x³ - 2x³) + x² + (-2x + x) + (1 - 5)
= x⁴ - 4x³ + x² - x - 4