`(a):\ A=((1)/(x+2\sqrt{x})-(1)/(\sqrt{x}+2)):(1-\sqrt{x})/(x+4\sqrt{x}+4)`
`(ĐK:x>0;x\ne 1)`
`=((1)/(\sqrt{x}(\sqrt{x}+2))-(1)/(\sqrt{x}+2)).((\sqrt{x}+2)^{2})/(1-\sqrt{x})`
`=(1-\sqrt{x})/(\sqrt{x}(\sqrt{x}+2)).((\sqrt{x}+2)^{2})/(1-\sqrt{x})`
`=(\sqrt{x}+2)/(\sqrt{x})`
`(b):\ A=5/3<=>(\sqrt{x}+2)/(\sqrt{x})=5/3`
`<=>5\sqrt{x}=3(\sqrt{x}+2)`
`<=>5\sqrt{x}-3\sqrt{x}=6`
`<=>2\sqrt{x}=6`
`<=>\sqrt{x}=3`
`<=>x=9\ (TMDK)`
a: \(A=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)
b: Để A=5/3 thì \(\dfrac{\sqrt{x}+2}{\sqrt{x}}=\dfrac{5}{3}\)
=>căn x=3
=>x=9