a: Ta có: ΔABC vuông tại A
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)
hay \(\widehat{ABC}=60^0\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\dfrac{1}{2}=3\left(cm\right)\)
hay \(AC=3\sqrt{3}\left(cm\right)\)
a: Ta có: ΔABC vuông tại A
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)
hay \(\widehat{ABC}=60^0\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\dfrac{1}{2}=3\left(cm\right)\)
hay \(AC=3\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A (AB < AC) , đường cao AH.
a) AB=6 cm, cos ABC = 3/5 . Tính BC,AC,AH.
b) Kẻ HD vuông góc với AB, HE vuông góc với AC . c/m: AD.AB=AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. c/m: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
Cho tam giác ABC vuông tại A (AB>AC), đường cao AH. Kẻ HD vuông góc với AB, Kẻ HE vuông góc với AC. kẻ ak vuông góc với de Gọi i là giao điểm của AH và DE.và \(AI^2=AD.AE\)
a, Chứng minh rằng: \(AI^2=DE.AE\)
b, TÍNH góc AIK
Bài 5 : Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB=4cm, AC=\(4\sqrt{3}\)cm. Giải tam giác ABC.
b) Kẻ HD,HE lần lượt vuông góc với AB,AC (D thuộc AB, E thuộc AC). Chứng minh BD.DA+CE.EA=\(AH^2\)
c) Lấy điểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I Chứng minh \(sinAMB.sinACB=\dfrac{HI}{CM}\) GIẢI HỘ E PHẦN C THÔI Ạ
Cho tam giác ABC vuông tại A, Kẻ đường cao AH. Kẻ HD vuông góc AB, HE vuông góc AC. Chứng minh DE^2 = HB. HC
Cho tam giác ABC có A = 90 độ , kẻ đường cao AH và trung tuyến AM kẻ HD vuông góc AB , HE vuông góc AC
biết HB = 4,5cm; HC=8cm.
a) Chứng minh BAH = MAC
b) Chứng minh AM vuông góc DE tại K
c) Tính độ dài AK
Cho tam giác ABC vuông tại A cs đường cao AH . Biết HB = 2 cm , HC = 8cm. a, Tính AH AC AB . b, kẻ HD vuông góc với AB , HE vuông góc với AC , Chứng minh DE=AH . c, gọi M là trung điểm BH , Chứng minh DM vuông góc với DE
có ai biết giải bài này k hộ mình với mình xin cảm ơn.
-bài 2: cho tam giác ABC có, AB=12cm; AC=16cm; BC=20cm
a, chứng minh tam giác ABC vuông
b tính độ cao AH
c, kẻ HD và HE lần lượt vuông góc AB , AC. Tính HD và HE.
-Bài 3: cho tam giác ABC vuông tại A , đường cao AH, biết AH:AC=3:5 và AB=15cm
a, tính HB và HC
b, gọi E, F lần lượt là hình chiếu của H trên AB và AC ; chứng minh AB.AC=EF.BC
-bài 4: cho tam giác ABC vuông tại A đường phân giác trong BD( DϵAC) cho AB=3cm; BC=5cm.
a, tính AC, AD,CD
b, tính BD
cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn tâm O. vẽ đường cao AH. từ H lần lượt kẻ HE⊥AB,HD⊥AC.
a, chứng minh: 4 điểm A,E,H,D cùng thuộc 1 đường tròn đường kính AH
b, vẽ đường kính AK của (O). chứng minh :HD song song với CK
cho tam giác ABC vuông tại A (AB<AC).Kẻ AH vuông góc với BC tại H.Gọi D,E lần lượt là hình chiếu cảu H trên AB,AC
a) biết AB=6cm, HC=6,3cm , tính BC,AC
b) chứng minh \(de^3=BC.BD.CE\)
C) Đường thẳng kẻ qua B vuông góc của BC cắt HD tại M , đường thẳng kẻ qua C vuông góc với BC cắt HE tại N. Chứng minh rằng M,A,N thẳng hàng