Lời giải:
a. Xét tam giác $ABH$ và $AHD$ có:
$\widehat{A}$ chung
$\widehat{AHB}=\widehat{ADH}=90^0$
$\Rightarrow \triangle ABH\sim \triangle AHD$ (g.g)
b. Xét tam giác $AEH$ và $HEC$ có:
$\widehat{AEH}=\widehat{HEC}=90^0$
$\widehat{EAH}=90^0-\widehat{AHE}=\widehat{EHC}$
$\Rightarrow \triangle AEH\sim \triangle HEC$ (g.g)
$\Rightarrow \frac{AE}{EH}=\frac{HE}{EC}$
$\Rightarrow HE^2=AE.EC$
c. Từ $\triangle ABH\sim \triangle AHD$ (phần a) suy ra:
$\frac{AB}{AH}=\frac{AH}{AD}$
$\Rightarrow AH^2=AB.AD$
Tương tự ta cũng có thể cm $\triangle AHE\sim \triangle ACH$
$\Rightarrow AH^2=AE.AC$
$\Rightarrow AB.AD=AE.AC$
$\Rightarrow \frac{AB}{AE}=\frac{AC}{AD}$
$\Rightarrow \triangle ABE\sim \triangle ACD$ (c.g.c)
$\Rightarrow \widehat{ABE}=\widehat{ACD}$ hay $\widehat{DBM}=\widehat{ECM}$
Xét tam giác $DBM$ và $ECM$ có:
$\widehat{DBM}=\widehat{ECM}$ (cmt)
$\widehat{DMB}=\widehat{EMC}$ (đối đỉnh)
$\Rightarrow \triangle DBM\sim \triangle ECM$ (g.g)