a, Xét △ABH và △AHD có:
∠AHB=∠ADH (=90o) , ∠BAH chung
⇒ △ABH ∼ △AHD (g.g)
b, Xét △AHE và △HCE có:
∠AHE=∠ACH (cùng phụ ∠AHC), ∠AEH=∠CEH (=90o)
⇒ △AHE ∼ △HCE (g.g)
⇒ \(\dfrac{HE}{EC}=\dfrac{AE}{HE}\) ⇒ HE2=AE.EC
a, Xét △ABH và △AHD có:
∠AHB=∠ADH (=90o) , ∠BAH chung
⇒ △ABH ∼ △AHD (g.g)
b, Xét △AHE và △HCE có:
∠AHE=∠ACH (cùng phụ ∠AHC), ∠AEH=∠CEH (=90o)
⇒ △AHE ∼ △HCE (g.g)
⇒ \(\dfrac{HE}{EC}=\dfrac{AE}{HE}\) ⇒ HE2=AE.EC
Cho tam giác ABC có đường cao AH (H ∈ BC).Gọi D và E lần lượt là hình của H trên AB và AC.Chứng minh rằng:
a) △ABH ∞ △AHD
b) HE2 = AE.EC
c) Gọi M là giao điểm của BE và CD.Chứng minh △DBM ∞ △ECM
Cho tam giác ABC có AH là đường cao, gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chúng minh rằng;
a, tam giác ABH đồng dạng với tam giác AHD
b, He2= AE.AC
Mọi người giúp mình với ạ. Cảm ơn mọi người rất nhiều!
Cho△ ABC có AH là đường cao(HϵBC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. CMR:
a) △ABH ∼ △ AHD
b)HE2 = AE.EC
c) Gọi M là giao điểm của BE và CD. CMR △DBM ∼ △ECM
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a) AEHD là hình chữ nhật
b) △ABH ~ △AHD
c) HE2 = AE.EC
d) Gọi M là giao điểm của BE và CD. Chứng minh rằng △DBM ~ △ECM
Cho tam giác ABC có AH là đường cao(H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, tam giác ABH đồng dạng với tam giác AHD
b,HE\(^2\)=AE.EC
c,Gọi M là giao điểm của BE và CD. Chứng minh rằng tam giác DBM đồng dạng với tam giác ECM
Cho tam giác ABC có AH là đường cao( H thuộc BC0.Gọi D và E lần lượt là hình chiếu của H trên AB và AC.CMR:
a,TG ABH đồng dạng TG AHD
b, HE22 = AE.EC
c, Gọi M là giao điểm của BE và CD.CMR Tg DBM đồng dạng Tg ECM
Cho tam giác ABC nhọn có đường cao AH,gọi I và K lần lượt là hình chiếu vuông góc của H trên AB và AC
a, Chứng minh tam giác AHI đồng dạng với tam giác ABH
b, Chứng minh AI.AB=AK.AC
C, gọi M là trung điểm của AB, E là điểm giao nhau giữa MD và AH, Chứng Minh ADsong song với CE
Cho tam giác ABC vuông tại A,đường cao AH.
a,Chứng minh: tam giác ABC đồng dạng với tam giác HBA.
b,Biết AB=8cm,AC=15cm.Tính AH,Sabc/Shac
c,Gọi M,N lần lượt là hình chiếu của H trên AB,Ac.Chứng Minh AM.AB=AN.Ac
cho tam giác abc vuông tại a có ah là đường cao (h thuộc bc) .gọi d và e lần lượt là hình chiếu của h trên ab và ac . cm rằng a, aehd là hình chữ nhật b, tam giác abh đồng dạng tam giác ahd c, he^2=ae.ec d, gọi m là giao điểm của be và cd. cm rằng tam giác dbm đồng dạng tam giác ecm