Ta có: \(\left(a+b\right)^2\ge4ab=16\Rightarrow a+b\ge4\Rightarrow a+b-4\ge0\)
\(P=\dfrac{1+b+1+a}{\left(1+a\right)\left(1+b\right)}=\dfrac{a+b+2}{ab+a+b+1}=\dfrac{a+b+2}{a+b+5}\)
\(P=\dfrac{3a+3b+6}{3\left(a+b+5\right)}=\dfrac{2\left(a+b+5\right)+\left(a+b-4\right)}{3\left(a+b+5\right)}\ge\dfrac{2\left(a+b+5\right)}{3\left(a+b+5\right)}=\dfrac{2}{3}\)
\(P_{min}=\dfrac{2}{3}\) khi \(a=b=2\)