Lời giải:
$P=a^3b^3+1+1+\frac{1}{a^3b^3}$
$=(ab)^3+\frac{1}{(ab)^3}+2$
Áp dụng BĐT Cô-si:
$(ab)^3+\frac{1}{4096(ab)^3}\geq 2\sqrt{(ab)^3.\frac{1}{4096(ab)^3}}=\frac{1}{32}(1)$
$ab\leq \frac{(a+b)^2}{4}=\frac{1}{4}$
$\Rightarrow (ab)^3\leq \frac{1}{64}$
$\Rightarrow \frac{4095}{4096(ab)^3}\geq \frac{4095}{64}(2)$
Từ $(1);(2)$ suy ra:
$P\geq \frac{1}{32}+\frac{4095}{64}+2=\frac{4225}{64}$
Vậy $P_{\min}=\frac{4225}{64}$
Giá trị này đạt tại $a=b=\frac{1}{2}$