Xét a.b>0 thỏa mãn a+b=1.Tìm GTNN của P=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)
Cho a,b>0 thỏa mãn a+b=1.Tìm GTNN của A=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)
MN giúp e với e cần gấp ạ
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\).Tìm GTNN của
P=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)
MN giúp e với ạ
Cho a, b, c > 0 thỏa mãn : \(\dfrac{3}{b}+\dfrac{4}{a}+\dfrac{4}{c}=3\)
Tìm GTNN của : \(A=\dfrac{2\left(a+b\right)^2}{2a+3b}+\dfrac{\left(b+2c\right)^2}{2b+c}+\dfrac{\left(2c+a\right)^2}{c+2a}\)
Cho a và b là các số khác 0 thỏa mãn: \(ab\left(a+b\right)=a^2+b^2-ab\)
Tìm Max của: \(A=\dfrac{1}{a^3}+\dfrac{1}{b^3}\)
Cho các số thực dương a,b,c thay đổi thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
Tìm GTLN của P=\(\dfrac{1}{\left(2a+b+c\right)^2}+\dfrac{1}{\left(2b+c+a\right)^2}+\dfrac{1}{\left(2c+a+b\right)^2}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3 tìm GTLN của \(\dfrac{1}{\left(a+b\right)^2+c^2}+\dfrac{1}{\left(b+c\right)^2+a^2}+\dfrac{1}{\left(a+c\right)^2+b^2}\)
1, Giả sử a,b,c là các số thực khác 0 thỏa mãn (a+b)(b+c)(c+a)=8abc
CMR: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ca}{\left(c+a\right)\left(a+b\right)}\)
2,Cho đường tròn tâm O bán kính R=6cm và 1 điểm A cách O 1 khoảng 10cm. Từ A vẽ tiếp tuyến AB (B là tiếp điểm). Vẽ cát tuyến ACD, gọi I là trung điểm của đoạn CD. Hỏi khi chạy trên đường tròn thì I chạy trên đường nào?
Cho a,b,c>0 thỏa mãn ab+bc+ca=1. CMR:
\(\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^3\le\dfrac{3}{2}\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\)