Sao lúc thì $x,y,z$ lúc thì $a,b$ vậy bạn? Bạn coi lại đề.
Sao lúc thì $x,y,z$ lúc thì $a,b$ vậy bạn? Bạn coi lại đề.
Cho a,b>0 thỏa mãn a+b=1.Tìm GTNN của A=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)
MN giúp e với e cần gấp ạ
Cho các số thực x, y, z thỏa mãn \(7\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=6\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2016\).
Tìm max: \(P=\dfrac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\dfrac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\dfrac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
Cho \(x,y,z\inℝ\) thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức: \(P=\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
1. Cho a,b>0; a+b=1
Tìm min A=\(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\)
2. Cho x,y,x >0 t/m: \(x^2+y^2+z^2=3\)
CMR: \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) ≥ 3
Cho \(x\), \(y\), \(z\) là 3 số khác 0 thoả mãn \(x\) \(+\) \(y\) \(+\) \(z\) \(=0\). Chứng minh rằng:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)=\(\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)
Cho x,y,z>0 thỏa mãn x+y+z=1.CMR:\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)
Tìm tất cả các số thực dương x,y,z thỏa mãn :
\(\left(1+\dfrac{x}{y+z}\right)^2+\left(1+\dfrac{y}{x+z}\right)^2+\left(1+\dfrac{z}{x+y}\right)^2=\dfrac{27}{4}\)
Cho 3 số thực dương x,y,z thỏa mãn \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3\)
Chứng minh \(\dfrac{27a^2}{c\left(c^2+9a^2\right)}+\dfrac{b^2}{a\left(4a^2+b^2\right)}+\dfrac{8c^3}{b\left(9b^2+4c^2\right)}\ge\dfrac{3}{2}\)
Cho \(x,y,z\in R\)Thỏa mãn
\(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)=3xyz\\\left(x^3+1\right)\left(y^3+1\right)\left(z^3+1\right)=\dfrac{81}{64}x^3y^3z^3\end{matrix}\right.\)
CMR \(xyz=0\)