Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoang Tran

cho a,b>0 thỏa mãn a+b≤1.Tìm GTNN của biểu thức

P=\(a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\)

Nguyễn Việt Lâm
3 tháng 8 2021 lúc 18:02

\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2\)

\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{8}{\left(a+b\right)^2}=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2\left(a+b\right)^2}+\dfrac{15}{2\left(a+b\right)^2}\)

\(P\ge\dfrac{1}{2}.2\sqrt{\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}}+\dfrac{15}{2.1^2}=\dfrac{17}{2}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)


Các câu hỏi tương tự
Hoang Tran
Xem chi tiết
Văn Hoang Tran
Xem chi tiết
Hồ Xuân Phương
Xem chi tiết
Lê Song Phương
Xem chi tiết
Hoàng Nhật
Xem chi tiết
Hoài Thu Vũ
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
Trần Đức Huy
Xem chi tiết
CTVHoidap
Xem chi tiết