Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\). Chứng minh rằng:
a+b+c\(\ge\)ab+bc+ca
cho a,b,c>0 thỏa mãn abc=1.
CMR:\(\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1}\ge\dfrac{3}{2}\)
Cho a, b, c > 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR:
\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ac}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)
Cho a, b: ab\(\ge\)1. Chứng minh:
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
cho a,b,c là các số thực dương thỏa mãn : abc=1
chứng minh: \(\dfrac{1}{ab+a}+\dfrac{1}{bc+b}+\dfrac{1}{ca+c}\ge\dfrac{3}{2}\)
cho a,b,c>0;\(a+b+c,abc=1\).CMR
\(\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ca}{b^2\left(c+a\right)}+\dfrac{ab}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a,b,c>0 thỏa mãn ab+bc+ac<=1
CMR: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
Cho các số dương a,b,c thỏa mãn ab + bc + ca = 3. CMR:
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)