Cho A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\). Chứng tỏ rằng A không phải là số tự nhiên.
cho \(M=\dfrac{1}{2^3}+\dfrac{2}{3^3}+\dfrac{3}{4^3}+...+\dfrac{2021}{2022^3}+\dfrac{2022}{2023^3}\). Chứng tỏ rằng giá trị của M không phải là một số tự nhiên
A = \(\dfrac{2022}{2021^{2^{ }}+1}\) + \(\dfrac{2022}{2021^{2^{ }}+2}\) + \(\dfrac{2022}{2021^2+3}\) + ... + \(\dfrac{2022}{2021^{2^{ }}+2021}\)
Chứng tỏ rằng A không phải số tự nhiên
chứng minh rằng tổng A =\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+............+\dfrac{1}{100}\)
không phải là số tự nhiên
Chứng minh rằng với số tự nhiên n > 2 thì +\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{n^2}\)
không là số tự nhiên
A = 1 - \(\dfrac{1}{5^2}\) + \(\dfrac{1}{5^3}\) - \(\dfrac{1}{5^4}\) + \(\dfrac{1}{5^5}\) -...- \(\dfrac{1}{5^{1999}}\). C/m: A không phải là số tự nhiên.
(#Chi tiết#)
Cho a,b,c là các số tự nhiên khác 0. Chứng tỏ: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)không phải là số tự nhiên.
cho \(M=\dfrac{1}{2^3}+\dfrac{2}{3^3}+\dfrac{3}{4^3}+...+\dfrac{2021}{2022^3}+\dfrac{2022}{2023^3}\) chứng minh rằng giá trị của M không phải là một số tự nhiên
gấp =) !
Chứng minh rằng số tự nhiên A chia hết cho 101 với:
A=1.2.3...99.100,(1\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}+\dfrac{1}{100}\))