Đáp án A
Ta có
lim x → − ∞ x 2 − 3 x + a x b x − 1 = 3 ⇔ lim x → − ∞ = − 1 − 3 x 2 + a b − 1 x = 3 ⇔ − 1 + a b = 3
Đáp án A
Ta có
lim x → − ∞ x 2 − 3 x + a x b x − 1 = 3 ⇔ lim x → − ∞ = − 1 − 3 x 2 + a b − 1 x = 3 ⇔ − 1 + a b = 3
Cho hàm số y = f x = a x 3 + b x 3 + c x + d a , b , c , d ∈ ℝ ; a ≠ 0 biết f'(-1)=3. Tính lim ∆ x → ∞ f 1 + ∆ x + f 1 ∆ x
A. 3
B. -3
C. 1
D. -1
Giới hạn lim x → 3 x + 1 - 5 x + 1 x - 4 x - 3 bằng a b (phân số tối giản). Giá trị của a - b là:
A. 1
B. 1 9
C. -1
D. 2
Cho các số thực a, b khác 0. Xét hàm số f ( x ) = a ( x + 1 ) 3 + b x e x với mọi x khác -1. Biết f'(0)=-22 và ∫ 0 1 f ( x ) d x = 5 . Tính a 2 + b 2 .
A. 42
B. 72
C. 68
D. 10
Cho các số thực a, b khác 0. Xét hàm số f ( x ) = a ( x + 1 ) 3 + b x e x với mọi x khác -1. Biết f'(0)=-22 và ∫ 0 1 f ( x ) d x = 5 . Tính a 2 + b 2
A. 42
B. 72
C. 68
D. 10
Cho hàm số f x = a x + b cx + d với a,b,c,d là các số thực và c ≠ 0 Biết f 1 = 1 , f 2 = 2 và f f x = x với mọi x ≠ - d c Tính lim x → ∞ f x
A. 3 2
B. 5 6
C. 2 3
D. 6 5
Cho a và b là các số thực khác 0. Tìm hệ thức liên hệ giữa a và b để giới hạn lim x → 3 − a x 2 − 7 x + 12 − b x 2 − 4 x + 3 là hữu hạn
A. 4 a + b = 0
B. 3 a + b = 0
C. 2 a + b = 0
D. a + b = 0
Cho a và b là các số thực khác 0. Tìm hệ thức liên hệ giữa a và b để giới hạn lim x → 3 − a x 2 − 7 x + 12 − b x 2 − 4 x + 3 là hữu hạn.
A. 4 a + b = 0
B. 3 a + b = 0
C. 2 a + b = 0
D. a + b = 0
Trong không gian Oxyz, cho hai điểm A(1;2;-3), B(2;0;-1). Tìm tất cả các giá trị thực của tham số m để hai điểm A, B nằm khác phía so với mặt phẳng x + 2 y + m z + 1 = 0
A. m ∈ 2 ; 3
B. m ∈ ( - ∞ ; 2 ] ∪ [ 3 ; + ∞ )
C. m ∈ - ∞ ; 2 ∪ 3 ; + ∞
D. m ∈ 2 ; 3
Cho các mệnh đề sau:
(I). Nếu a = b c t h ì 2 ln a = ln b + ln c
(II). Cho số thực 0 < a ≠ 1. Khi đó a - 1 log a x ≥ 0 ⇔ x ≥ 1
(III). Cho các số thực 0 < a ≠ 1 , b > 0 , c > 0 . Khi đó b log a c ≥ 0 ⇔ x ≥ 1
(IV). l i m x → + ∞ 1 2 x = - ∞ .
Số mệnh đề đúng trong các mệnh đề trên là
A. 3
B. 4
C. 2
D. 1