Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Trang

Cho a, b, c là các số thực dương. Cmr:

\(\dfrac{a}{2a+b+c}\)\(+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\)\(\le\dfrac{3}{4}\)

Kuro Kazuya
22 tháng 3 2017 lúc 23:36

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2a+b+c}=\dfrac{a}{a+b+c+a}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}\right)\\\dfrac{b}{a+2b+c}=\dfrac{b}{a+b+b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{c}{a+b+2c}=\dfrac{c}{a+c+b+c}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{a}{4\left(a+b\right)}+\dfrac{a}{4\left(a+c\right)}+\dfrac{b}{4\left(a+b\right)}+\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(a+c\right)}+\dfrac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\left[\dfrac{a}{4\left(a+b\right)}+\dfrac{b}{4\left(a+b\right)}\right]+\left[\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(b+c\right)}\right]+\left[\dfrac{c}{4\left(a+c\right)}+\dfrac{a}{4\left(a+c\right)}\right]\)

\(\Rightarrow VT\le\dfrac{a+b}{4\left(a+b\right)}+\dfrac{b+c}{4\left(b+c\right)}+\dfrac{c+a}{4\left(c+a\right)}\)

\(\Rightarrow VT\le\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\le\dfrac{3}{4}\) ( đpcm )

Dấu "=" xảy ra khi \(a=b=c\)


Các câu hỏi tương tự
Linh Nhi
Xem chi tiết
trần nhật chương
Xem chi tiết
Nguyễn Anh Khoa
Xem chi tiết
soyeon_Tiểubàng giải
Xem chi tiết
Nguyễn Thị Huyền Mai
Xem chi tiết
Nghiêm Phương Linh
Xem chi tiết
Nguyễn Thị Huyền Mai
Xem chi tiết
Nguyễn Thị Huyền Mai
Xem chi tiết
phan thị minh anh
Xem chi tiết