Cho các số thực x,y,z thỏa mãn: \(x+y\le z\). CMR: \(\left(x^2+y^2+z^2\right).\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge\frac{27}{2}\)
Cho 3 số thực dương x , y , z thỏa mãn \(x+y+z\ge3\)
Chứng minh rằng: \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
cho x,y,z là các số thực dương thỏa x+y+z=4 CMR
\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4zx}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)
Tìm các số dương x,y, z thỏa
\(\left\{{}\begin{matrix}x+y^2+z^3=3\\\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\end{matrix}\right.\)
Giải hệ phương trình :
\(\begin{cases}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{cases}\)
Cho x , y , z > 0
Chứng minh rằng \(\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Ai đó giúp tui nhanh nha , thanks you
giả sử bộ 3 số thực thỏa hệ \(\left\{\begin{matrix}x+1=y+z\\xy+z^2-7z+10=0\end{matrix}\right.\left(I\right)\)
tìm tất cả bộ ba (x,y,z) thỏa hệ trên sao cho \(x^2+y^2=17\)
cho số thực:x, y, z thỏa mãn: \(y^2+yz+z^2=1-\frac{3x^2}{2}\). tìm Max và Min của biểu thức: A=x+y+z
Cho x,y,z > 0 và x + y + x = 4. Tìm GTNN của \(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)