Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quách Phú Đạt

Cho 3 số thực dương x , y , z thỏa mãn \(x+y+z\ge3\)

Chứng minh rằng: \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

Kuro Kazuya
9 tháng 2 2017 lúc 4:49

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Xét \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\\\sqrt{xy}\le\frac{x+y}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{y+z}{2}+\frac{x+z}{2}+\frac{x+y}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le2\left(x+y+z\right)\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Ta có: \(x+y+z\ge3\)

\(\Rightarrow\frac{x+y+z}{2}\ge\frac{3}{2}\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{3}{2}\)

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\) ( đpcm )


Các câu hỏi tương tự
Phú Nguyễn
Xem chi tiết
Quốc Bảo
Xem chi tiết
michelle holder
Xem chi tiết
Quốc Bảo
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Neet
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Sáng
Xem chi tiết
Quốc Bảo
Xem chi tiết