Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê thị tiều thư

cho x,y,z là các số thực dương thỏa x+y+z=4 CMR

\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4zx}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)

Lightning Farron
25 tháng 2 2017 lúc 22:02

Áp dụng BĐT AM-GM ta có: \(\frac{x^2+4yz}{2}\ge2x\sqrt{yz}\)

\(\Rightarrow\frac{2}{x^2+4yz}\le\frac{1}{2x\sqrt{yz}}\Rightarrow\frac{1}{x^2+4yz}\le\frac{1}{4x\sqrt{yz}}\)

Cộng theo vế ta có:

\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}\le\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\)

Cần chứng minh \(\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\le\frac{1}{xyz}\)

Nhân 2 vế với \(xyz\) ta lại được BĐT cần c/m tương đương với:

\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le1\)

Áp dụng BĐT AM-GM lần nữa ta có:

\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{1}{4}\left(x+y+z\right)=1\) (Đúng)

Vậy BĐT đầu đã được c/m

ngonhuminh
25 tháng 2 2017 lúc 19:32

\(\left|\left\{\right\}\right|\)

Bùi Nhất Duy
26 tháng 2 2017 lúc 13:38

Theo đề ta có : x > 0\(\Rightarrow x^2+4yz>4yz\)

\(\Rightarrow\frac{1}{x^2+4yz}< \frac{1}{4yz}\) (1)

Chứng minh tương tự :\(\frac{1}{y^2+4xz}< \frac{1}{4xz}\) (2)

\(\frac{1}{z^2+4xy}< \frac{1}{4xy}\) (3)

Cộng (1),(2) và (3) vế theo vế ,ta được :

\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac{1}{4}\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)=\frac{1}{4}\times\frac{x+y+z}{xyz}=\frac{1}{xyz}\)

Vậy \(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)


Các câu hỏi tương tự
Lê Chí Cường
Xem chi tiết
Quốc Bảo
Xem chi tiết
Sáng
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
lê thị tiều thư
Xem chi tiết
sakura
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
phan thị minh anh
Xem chi tiết
Lê Thị Linh Chi
Xem chi tiết