Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Như

cho 2 pt x2 +mx +2 =0

x2 +2x +m =0

a/tìm m để 2 pt có ít nhất 1 nghiệm chung

b/ tìm m để pt

(x2 +mx +2) (x2 +2x +m) = 0 có 4 nghiệm phân biệt x1,x2,x3,x4

c/ tìm min E = x12 + x22 + x32 + x42

Akai Haruma
1 tháng 3 2017 lúc 0:24

Lời giải:

a) Gọi nghiệm chung của hai PT là \(a\). Có nghiệm chung nghĩa là PT

\(a^2+ma+2-(a^2+2a+m)=0\) phải có nghiệm

\(\Leftrightarrow (a-1)(m-2)=0\)

Do đó nếu hai PT có nghiệm chung thì nghiệm đó là \(a=1\)

Thay vào \(\Rightarrow m+3=0\Rightarrow m=-3\)

b) Để PT \((x^2+mx+2)(x^2+2x+m)=0\) có bốn nghiệm phân biệt thì mỗi PT bậc hai trên phải có hai nghiệm pb.

Trước tiên phải xác định điều kiện có nghiệm\( \left\{\begin{matrix} \Delta _1=m^2-8>0\\ \Delta _2=4-4m>0\end{matrix}\right.\Rightarrow m<-\sqrt{8}\)

PT đã cho không có có bốn nghiệm phân biệt tức là \(x^2+mx+2=0\)\(x^2+2x+m=0\) không có nghiệm chung, tức là \(m\neq -3\)

Vậy \(\left\{\begin{matrix}m< -\sqrt{8}\\m\ne-3\end{matrix}\right.\)

c) Theo Viet có \(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=2\end{matrix}\right.+\left\{\begin{matrix} x_3+x_4=-2\\ x_3x_4=m\end{matrix}\right.\)

\(\Rightarrow E=x_1^2+x_2^2+x_3^2+x_4^2=m^2-4+4-2m=m^2-2m=(m-1)^2-1\geq -1\)

Vậy \(E_{\min}=-1\Leftrightarrow m=1\)


Các câu hỏi tương tự
K2
Xem chi tiết
Như
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Fan soobin
Xem chi tiết
Thùy Phạm
Xem chi tiết
Nhật Hoàng
Xem chi tiết
Thanh Hà Trịnh
Xem chi tiết
Thùy Phạm
Xem chi tiết
le van khanh
Xem chi tiết