Vì số tự nhiên a chia cho 5 dư 4 nên a có dạng \(a=5k+4\)
Ta có \(a^2=\left(5k+4\right)^2=25k^2+40k+16=5\left(5k^2+8k+3\right)+1\)
Ta thấy \(5\left(5k^2+8k+1\right)⋮5\forall k\)
\(\Rightarrow\left[5\left(5k^2+8k+1\right)+1\right]⋮5\)dư 1
Vậy \(a^2\)chia cho 5 dư 1