A=-1/2*-2/3*-3/4*..*-2013/2014
A=-1*-2*-3*...*-2013/2*3*4*...*2014
A=-1/2014
ta có(-1)^2015=-1
B=-1/2015>-1/2014=A
nên A<B
A=-1/2*-2/3*-3/4*..*-2013/2014
A=-1*-2*-3*...*-2013/2*3*4*...*2014
A=-1/2014
ta có(-1)^2015=-1
B=-1/2015>-1/2014=A
nên A<B
Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\)
\(B=\frac{2015}{1}+\frac{2014}{2}+...+\frac{2}{2014}+\frac{1}{2015}\)
Tính \(\frac{A}{B}\)
bài 3: chứng tỏ rằng:
b) Đặt A = \(\frac{1}{15.18}+\frac{1}{18.21}+...+\frac{1}{87.90}
So sánh: \(A=\frac{2015^{2005}+1}{2005^{2006}+1}\) và \(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
Giúp với Toán 6 đó!
Tính B=$\frac{1}{3} \frac{1}{6}\left(1 2\right) \frac{1}{9}\left(1 2 3\right) ... \frac{1}{6045}\left(1 2 3 ... 2015\right)$13 16 (1 2) 19 (1 2 3) ... 16045 (1 2 3 ... 2015)
Đề này dùng để cho các bạn lớp 7 tham khảo , không cần giải , bài nào không biết thì nói với mình
Câu 1: Tính
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2013}\right)\left(1-\frac{1}{2014}\right)\)
\(B=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
Câu 2: Cho \(\frac{2x+2y-z}{z}=\frac{2x+2z-y}{y}=\frac{2z+2y-x}{x}\) (với x,y,z là các số hữu tỉ dương)
Tính giá trị của \(C=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}\)
Help: Cho A=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\).Hãy so sánh A với \(\frac{1}{2}\)
làm ơnnn giúp mik bài 87 sách giáo khoa lớp 6 tr 43 :
a) tính giá trị biểu thức sau : \(\frac{2}{7}:1;\frac{2}{7}:\frac{3}{4};\frac{2}{7}:\frac{5}{4}\)
b) so sánh số chia với 1 trong mỗi trường hợp
c) so sánh giá tìm được với số bị chia rồi rút ra kết luận
1)Cho a,b,c là các số thực thỏa mãn: a+b+c=2015 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\).Tính \(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}\)
2)Cho n là số dương.Chứng minh:
T= \(2^{3n+1}-2^{3n-1}+1\) là hợp số.
3)Cho a,b,c là ba số dương và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm Max A=\(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
So sánh A và B(ko dùng máy tính)
A=\(\sqrt{481}\)
\(B=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+..+\frac{1}{\sqrt{2013}+\sqrt{2015}}\)
Minh Triều làm giúp đi,tick cho