với a > 0, b > 0 thì \(\sqrt{\dfrac{a}{b}}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\)bằng:
a) 2
b) \(\dfrac{2\sqrt{ab}}{b}\)
c) \(\sqrt{\dfrac{a}{b}}\)
d) \(\sqrt{\dfrac{2a}{b}}\)
Chứng minh đẳng thức:
a) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
( với a > hoặc bằng 0; b > hoặc bằng 0; a khác b )
Bài: C/m đẳng thức
\(\dfrac{1}{\sqrt{4}-\sqrt{5}}\) : \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\) = \(\dfrac{1}{a-b}\) với a,b>0 , a,b≠0
a>0, b>0 ,a≠b
chứng minh ( \(\sqrt{\dfrac{a}{b}}\)-\(\sqrt{\dfrac{b}{a}}\)) :(a-b) = \(\dfrac{1}{\sqrt{ab}}\)
mn giúp e với ạ
cho biểu thức p=\(\left(\dfrac{b-a}{\sqrt{b}-\sqrt{a}}-\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}\right):\dfrac{\left(\sqrt{b}-\sqrt{a}\right)^2+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)với a lớn hơn bằng 0,b lớn hơn bằng 0,a khác b
a rút gọn p
b cm p lớn hơn bằng 0
Chứng minh các đẳng thức sau:
c) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\) ( với a,b > 0 và a \(\ne\) b )
Bài : Rút gọn
\(\dfrac{\sqrt{a}+\sqrt{ab}}{a-b}\) - \(\dfrac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\) với a,b ≥ 0 , a≠b
a)\(\sqrt{\dfrac{a^2}{25+10b+b^2}}\) với a < 0, b >0
b)\(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}\)với a khác b
c)\(\dfrac{x+4\sqrt{x}+4}{2+\sqrt{x}}\)với x >= 0
Phát biểu định lí sau bằng lời: Với a ≥ 0, b > 0, ta có: \(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}\)