ĐKXĐ: x<>3
\(5x+\dfrac{1}{x-3}=\dfrac{1}{x-3}+15\)
=>5x=15
=>x=3(loại)
vậy: phương trình vô nghiệm
ĐKXĐ: x<>3
\(5x+\dfrac{1}{x-3}=\dfrac{1}{x-3}+15\)
=>5x=15
=>x=3(loại)
vậy: phương trình vô nghiệm
giải các phương trình sau
1, \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
2, \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)
3, \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)
Giải các phương trình
\(1,\dfrac{5x-1}{3}-1=2x+3\)
\(2,16x^2-3=\left(4x-3\right)\left(5x+1\right)\)
\(3,\dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{-x\left(15-x\right)}{x^2-4}\)
:)
(\(\dfrac{x^2-5x}{x^2-25}\)-1):(\(\dfrac{25-x^2}{x^2+2x-15}\)-\(\dfrac{x+3}{x+5}\)-\(\dfrac{x-3}{x-5}\))
Đưa các phân thức sau về cùng mẫu
a) \(\dfrac{x}{2x^2+7x-15}\); \(\dfrac{x+2}{x^2+3x-10}\); \(\dfrac{1}{x+5}\)
b) \(\dfrac{1}{-x^2+3x-2}\); \(\dfrac{1}{x^2+5x-6}\); \(\dfrac{1}{-x^2+4x-3}\)
c)\(\dfrac{3}{x^3-1}\); \(\dfrac{2x}{x^2+x+1}\); \(\dfrac{x}{x-1}\)
d)\(\dfrac{x}{x^2-2xy+y^2-x^2}\); \(\dfrac{y}{x^2+2yz-y^2-z^2}\); \(\dfrac{z}{x^2-2xz-y^2+z^2}\)
Thực hiện phép tính:
\(a,\dfrac{5x+1}{x^3-1}-\dfrac{1-2x}{x^2+x+1}-\dfrac{2}{1-x}\)
\(b,\dfrac{5}{x+1}-\dfrac{10}{x-x^2-1}-\dfrac{15}{x^3+1}\)
Thực hiện phép tính:
\(a,\dfrac{5x+1}{x^3-1}-\dfrac{1-2x}{x^2+x+1}-\dfrac{2}{1-x}\)
\(b,\dfrac{5}{x+1}-\dfrac{10}{x-x^2-1}-\dfrac{15}{x^3+1}\)
1/ \(\dfrac{5x+1}{8}-\dfrac{x-2}{4}=\dfrac{1}{2}\)
2/ \(\dfrac{x+3}{4}+\dfrac{1-3x}{3}=\dfrac{-x+1}{18}\)
3/ \(\dfrac{x+2}{4}-\dfrac{5x}{6}=\dfrac{1-x}{3}\)
4/ \(\dfrac{x-3}{2}-\dfrac{x+1}{10}=\dfrac{x-2}{5}\)
5/ \(\dfrac{4x+1}{4}-\dfrac{9x-5}{12}+\dfrac{x-2}{3}=0\)
giải các phương trình sau
1, \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)
2, \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)
3, \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
Giải các bất phương trình sau
a) 5x(x-3)2-5(x-1)3+15(x-4)(x+4)< hoặc = 10
b) (3x-2)(9x2+6x+4)+27x(\(\dfrac{1}{3}\)-x)(\(\dfrac{1}{3}\)+x)> hoặc = 1
Giải phương trình
a) \(\dfrac{3}{5x-1}\)+ \(\dfrac{2}{3-5x}\)=\(\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
b) \(\dfrac{5-x}{4x^2-8x}\)+\(\dfrac{7}{8x}\)=\(\dfrac{x-1}{2x\left(x-2\right)}\)+\(\dfrac{1}{8x-16}\)