ta có
1/1*2+1/2*3+1/3*4+...+1/n*(n+1)=1/1-1/2+1/2-1/3+1/3-...-1/n+1= 33/34 (quy tắc)
1 - 1/n+1=33/34
1/n+1=1/34
nên n =33
ta có
1/1*2+1/2*3+1/3*4+...+1/n*(n+1)=1/1-1/2+1/2-1/3+1/3-...-1/n+1= 33/34 (quy tắc)
1 - 1/n+1=33/34
1/n+1=1/34
nên n =33
c/m :
1.2+2.3+3.4+...+n.(n+1)=\(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
làm quy nạp giùm
\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
CHo \(a.b=\frac{ab}{a+b}\)
Tính \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{2000.2001}\)
Tìm \(x\in Z\), biết:
\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{3}{10}\)
vì sao \(\frac{2}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
Tìm x thuộc N biết:
\(\frac{1}{21}+\frac{1}{28}+\frac{3}{26}+...+\frac{2}{n.\left(n+1\right)}=\frac{3}{10}\)
Tính \(A=10.\left(\frac{1}{1.2}+\frac{5}{2.3}+...+\frac{89}{9.10}\right)\)
Giải cả bài nha
CMR: \(\frac{1}{n}+\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)