\(xy\sqrt{\dfrac{x}{y}}=xy\cdot\dfrac{\sqrt{x}}{\sqrt{y}}\)
\(=\dfrac{xy\sqrt{x}}{\sqrt{y}}=x\sqrt{xy}\)
#Ayumu
\(xy\sqrt{\dfrac{x}{y}}=xy.\dfrac{\sqrt{x}}{\sqrt{y}} =\dfrac{xy\sqrt{x}}{\sqrt{y}}=x\sqrt{xy}\)
\(xy\sqrt{\dfrac{x}{y}}=xy\cdot\dfrac{\sqrt{x}}{\sqrt{y}}\)
\(=\dfrac{xy\sqrt{x}}{\sqrt{y}}=x\sqrt{xy}\)
#Ayumu
\(xy\sqrt{\dfrac{x}{y}}=xy.\dfrac{\sqrt{x}}{\sqrt{y}} =\dfrac{xy\sqrt{x}}{\sqrt{y}}=x\sqrt{xy}\)
Bài 2. Cho A=\(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}\) :\([\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\dfrac{1}{xy+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)]\)
\(\dfrac{\sqrt{xy}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)_{ }^2}{\sqrt{x}-\sqrt{y}}\)
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)
\([\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{(\sqrt{x}+\sqrt{y})^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y]:(\sqrt{y}-2)\)
giải giúp em với em cám ơn
Cho x và y là 2 số trái dấu. Chứng minh rằng: \(\dfrac{xy-x^2}{\sqrt{-\dfrac{x}{y}}}=\dfrac{xy-y^2}{\sqrt{-\dfrac{y}{x}}}\)
\(\dfrac{\sqrt{27}-\sqrt{15}}{3-\sqrt{5}}+\dfrac{4}{2+\sqrt{3}}-\dfrac{6}{\sqrt{3}}\)
\(\dfrac{x-y}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
Cho x,y là các số thực dương thỏa mãn : \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=\dfrac{5}{2}\)
Tính giá trị biểu thức : A=\(\dfrac{2x+3\sqrt{xy}}{2x-3\sqrt{xy}}\)
Giúp mình với !!!!!!!!
Hãy cho bt các biểu thức dưới có phụ thuộc vào biến số hay k?
a) \(A=\left(\dfrac{\sqrt{x}-\sqrt{y}}{x-y}+\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}+1}{\sqrt{x}+\sqrt{y}}\)
b) \(B=3x-1-\sqrt{x^2-6x+9}\)
Chứng minh rằng biểu thức sau không phụ thuộc vào biến
A = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)
B = \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
Chứng minh rằng biểu thức sau không phụ thuộc vào biến
A = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)
B = \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)