Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
títtt

xét tính liên tục của hàm số

a) \(f\left(x\right)=3x^2-2x+4\) tại x = -2

b) \(f\left(x\right)=2x^3-3x^2+1\) tại x = 3

Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 19:50

a: \(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}3x^2-2x+4\)

\(=3\cdot\left(-2\right)^2-2\cdot\left(-2\right)+4\)

\(=3\cdot4+4+4=20\)

\(f\left(-2\right)=3\cdot\left(-2\right)^2-2\left(-2\right)+4=20\)

=>\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)

=>Hàm số liên tục tại x=-2

b: \(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}2x^3-3x^2+1\)

\(=2\cdot3^3-3\cdot3^2+1\)

\(=2\cdot27-27+1=27+1=28\)

\(f\left(3\right)=2\cdot3^3-3\cdot3^2+1=54-27+1=28\)

=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\)

=>Hàm số liên tục tại x=3


Các câu hỏi tương tự
títtt
Xem chi tiết
títtt
Xem chi tiết
27. Trần Thanh Nhã 9A3
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết