Ta có:
\(AB^2=BC\cdot BH=c^2=a\cdot c'\)
\(\Rightarrow c\cdot c=a\cdot c'\Rightarrow\dfrac{a}{c}=\dfrac{c}{c'}\)
Vậy đáp án đúng là D
Ta có:
\(AB^2=BC\cdot BH=c^2=a\cdot c'\)
\(\Rightarrow c\cdot c=a\cdot c'\Rightarrow\dfrac{a}{c}=\dfrac{c}{c'}\)
Vậy đáp án đúng là D
cho tam giác ABC, AH⊥BC (H nằm Giữa B và C). M là trung điểm BC. Biết
∠BAH=∠CAM.
a) CMR: \(\dfrac{HB}{HC}=\dfrac{AB^2}{AC^2}\)
b) CMR: AB=AC hoặc ∠BAC=90 độ
Ai giải giúp em với ạ. Em gấp lắm rùi
Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.
a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.
b*) Tính độ dài các cạnh BC, AB và AC.
Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.
c) Tính độ dài các cạnh AH và BH.
d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.
e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)
Gợi ý:
1. Secant - sec α nghịch đảo với cos α
2. Cosecant - csc α nghịch đảo với sin α
Cho tam giác ABC vuông tại A, đường cao AH. Biết BC= 8cm, BH = 2cm
a)Tính độ dài AB,AC,AH
b)Trên cạnh AC lấy điểm K ( K ≠ A, K ≠ C), gọi D là hình chiếu của A trên BK.C/m rằng BD.BK = BH.BC
c)C/m rằng SBHD = \(\dfrac{1}{4}\)SBKC cos2 góc ABD
Gọi AD và AH lần lượt là đường phân giác và đường cao của tam giác ABC (H nằm giữa D và C). Các điểm M,N là chân các đường vuông góc của D tương ứng trên các cạnh AC, AB
a, CMR \(\dfrac{MC}{NB}\) =\(\dfrac{CH}{BH}\)
b, BM cắt AH tại K. CMR \(\dfrac{CK}{KH}\)=\(\dfrac{AM}{MC}\).\(\dfrac{CB}{BH}\)
c, CMR CN đi qua K
Câu 80**: Tam giác ABC có Â = 1200 , AB = AC, BC = 12 . Độ dài đường cao AH là:
A. \(\sqrt{3}\); B . \(\dfrac{\sqrt{3}+1}{2}\) ; C . \(\dfrac{2+\sqrt{3}}{2}\); D.\(2\sqrt{3}\) .
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
Chứng minh rằng với a, b, c, d ta đều có: \(\dfrac{ab}{a+b+2c}+\dfrac{bc}{2a+b+c}+\dfrac{ac}{a+2b+c}\le\dfrac{a+b+c}{4}\)
Câu 80**: Tam giác ABC có Â = 1200 , AB = AC, BC = 12 . Độ dài đường cao AH là:
A. √3; B \(\dfrac{\sqrt{3}+1}{2}\). ; C \(\dfrac{2+\sqrt{3}}{2}\).; D\(2\sqrt{3}\). .
giải hộ mik với
a, b, c là độ dài 3 cạnh tam giác. Chứng minh:
a, 1 < \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
b, 1 < \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)