Ta có: \(P=4x+y+\dfrac{2}{x^2}+\dfrac{1}{x}+\dfrac{42}{y}\)
\(\Rightarrow P=2x+2x+\dfrac{2}{x^2}+\dfrac{1}{x}+\dfrac{6}{y}+y+\dfrac{36}{y}\)
Theo bất đẳng thức AM-GM:
\(2x+2x+\dfrac{2}{x^2}\ge3\sqrt[3]{2x.2x.\dfrac{2}{x^2}}=6\)
\(y+\dfrac{36}{y}\ge2\sqrt{y.\dfrac{36}{y}}=12\)
\(\Rightarrow P\ge2+6+12=20\)
Lúc này:
\(y=\dfrac{36}{y}\Rightarrow y=6\left(y>0\right)\)
\(2x=2x=\dfrac{2}{x^2}\Rightarrow2x=\dfrac{2}{x^2}\Rightarrow x=1\)
Vậy min P = 20 khi x = 1; y = 6