Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
títtt

xác định đường tiệm cận ngang của đồ thị hàm số sau

a) \(y=\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)

b) \(y=\dfrac{\sqrt{2x^2+1}-x}{x+2}\)

Nguyễn Lê Phước Thịnh
10 tháng 1 2024 lúc 19:40

a: \(\lim\limits_{x\rightarrow+\infty}y=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{9+\dfrac{1}{x}}+1}{2+\dfrac{5}{x}}=\dfrac{\sqrt{9}+1}{2}=\dfrac{3+1}{2}=2\)

=>Đường thẳng y=2 là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)

\(\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{9+\dfrac{1}{x}}+1}{2+\dfrac{5}{x}}=\dfrac{-3+1}{2}=\dfrac{-2}{2}=-1\)

=>Đường thẳng y=-1 là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)

b: \(\lim\limits_{x\rightarrow+\infty}y=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{2x^2+1}-x}{x+2}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{2+\dfrac{1}{x^2}}-1}{1+\dfrac{2}{x}}=\dfrac{\sqrt{2}-1}{1}=\sqrt{2}-1\)

=>Đường thẳng \(y=\sqrt{2}-1\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{2x^2+1}-x}{x+2}\)

\(\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{2x^2+1}-x}{x+2}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{2+\dfrac{1}{x^2}}-1}{1+\dfrac{2}{x}}=\dfrac{-\sqrt{2}-1}{1}=-\sqrt{2}-1\)

=>Đường thẳng \(y=-\sqrt{2}-1\) là một tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{2x^2+1}-x}{x+2}\)


Các câu hỏi tương tự
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
Pham Trong Bach
Xem chi tiết