\(x^5+x^4+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^4+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4=-1\end{matrix}\right.\)
\(\Rightarrow x=-1\) (do \(x^4\ge0\forall x\))
Vậy x = -1
\(x^5+x^4+x+1=0\)
\(\Leftrightarrow\left(x^5+x^4\right)+\left(x+1\right)=0\)
\(\Leftrightarrow x^4\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^4+1\right)\left(x+1\right)=0\) (Mà: \(x^4+1\ge1>0\forall x\))
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)