=>\(\dfrac{x-1}{x-3}-1>=0\)
=>\(\dfrac{x-1-x+3}{x-3}>=0\)
=>\(\dfrac{2}{x-3}>=0\)
=>x-3>0
=>x>3
=>\(\dfrac{x-1}{x-3}-1>=0\)
=>\(\dfrac{x-1-x+3}{x-3}>=0\)
=>\(\dfrac{2}{x-3}>=0\)
=>x-3>0
=>x>3
Giải các phương trình sau:
1) 2 1 5 x 2) 2 1 5 x x
3) 3 1 2 x x 4) 3 2 2 x x
5) 2 1 5 x x 6) 3 2 x x
7) 2 3 2 1 x x 8) 2 1 4 1 0 x x 2
9) 2 5 4 3 1 1 2
3 2 3 1
x x
x x x x
10) 1 7 3 2
3 3 9
x x x
x x x
11) 5 296 2 1 3 1
16 4 4
x x
x x x
12)
2 4
1
2 1 2 1 2 1 2 1
x x
x x x x
13) 2 1 2 2
2 2
x
x x x x
14) 22 4
2 6 2 2 2 3
1) √(2x-1) <= 8-2x
2) √[(x+1)(4-x)] > x-2
3) √(x-2x^2+1) > 1-x
4) √(x+5) - √(x+4) > √(x+3)
5) √(5x-1) - √(x-1) > √(2x-4)
6) √(x+3) >= √(2x-8) + √(7-x)
7) √(x+2) - √(3-x) < √(5-2x)
8) √(x+1) > 3 - √(x+4)
9) √(5x-1) - √(4x-1)<= 3√x
10) { {√[2(x^2-16)]} / √(x-3) }+ √(x-3) > (7-x) / √(x-3)
Giúp mình 10 câu này với ạaa
rút gọn biểu thức chứa căn thức bậc hai
√x/√x-1 - 6/√x-1 - 2√3/√x-1 (x>=0,xkhasc1 )
3-√x/√x-2 - 1-√x/√x-2 - -5√x/√x -2
2-6√x/√x-4 - 1-√x/√x-4 - 3-√x/√x-4
1) |2x - 1| = 5
2) |2x - 1| = |x + 5|
3) |3x + 1| = x - 2
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}
\)
\(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
\(\left(1-\dfrac{4}{\sqrt{x}-1}+\dfrac{1}{x-1}\right):\left(\sqrt{x}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
TÌM ĐKXĐ VÀ RÚT GỌN
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
cho x>1, y>0. cm: 1/(x+1)*3 +(x+1)*3/y*3 +1/y*3 >= 3( 3-2x/x-1 +x/y)
Cho biểu thức
P= \(\left(\dfrac{\sqrt{x-1}}{3+\sqrt{x-1}}+\dfrac{x+8}{\left(3-\sqrt{x-1}\right)\left(3+\sqrt{x-1}\right)}\right):\left(\dfrac{3\sqrt{x-1}+1}{x-1-3\sqrt{x-1}}-\dfrac{1}{\sqrt{x-1}}\right)\)
a) Rút gọn P .
b) Tính giá trị của biểu thức P khi x= \(\sqrt{3+2\sqrt{2}}-\left(\sqrt{5}+1\right)\sqrt{3-2\sqrt{2}}+\sqrt{5}\left|1-\sqrt{2}\right|\)
Giải các ptr sau
a, 10x2 + 17x + 3 = 2( 2x - 1 ) - 15
b, x2 + 7x - 3 = x( x - 1 ) - 1
c, 2x2 - 5x - 3 = (x + 1)(x - 1) + 3
d, 5x2 - x - 3 = 2x( x - 1) - 1 + x2
e, -6x2 + x - 3 = -3x( x - 1) -11
f, -4x2 + x ( x - 1) - 3 = x( x + 3 ) + 5
g, x2 - x - 3( 2x + 3 ) = -x( x - 2) - 1
h, -x2 - 4x - 3( 2x - 7 ) = -2x( x + 2 ) - 7
i, 8x2 - x - 3x( 2x - 3 ) = -x( x - 2 )
k, 3( 2x + 3 ) = -x( x - 2 ) -1