Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TrịnhAnhKiệt

Với a, b, c là các số thực thỏa mãn abc=2023. Tính giá trị biểu thức
P=\(\dfrac{1}{bc\left(b+c\right)+2023}\)+\(\dfrac{1}{ca\left(c+a\right)+2023}\)+\(\dfrac{1}{ab\left(a+b\right)+2023}\)

Nguyễn Đức Trí
19 tháng 9 2023 lúc 9:12

\(P=\dfrac{1}{bc\left(b+c\right)+2023}+\dfrac{1}{ca\left(c+a\right)+2023}+\dfrac{1}{ab\left(a+b\right)+2023}\left(abc=2023\right)\)

\(\Leftrightarrow P=\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}+\dfrac{1}{ab\left(a+b\right)+abc}\)

\(\Leftrightarrow P=\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}+\dfrac{1}{ab\left(a+b+c\right)}\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{a^2bc+b^2ca+c^2ab}{\left(abc\right)^2}\right]\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{abc\left(a+b+c\right)}{\left(abc\right)^2}\right]\)

\(\Leftrightarrow P=\dfrac{1}{abc}=\dfrac{1}{2023}\)


Các câu hỏi tương tự
Đường Kỳ Quân
Xem chi tiết
thuychi_065
Xem chi tiết
Đặng Anh Tuấn
Xem chi tiết
Đặng Thị Trà My
Xem chi tiết
Cù Hương Ly
Xem chi tiết
Muichirou- san
Xem chi tiết
Tô Mì
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
tnt
Xem chi tiết