- Gọi phương trình đường thẳng (d) có dạng : \(y=ax+b\)
Mà đường thẳng (d) đi qua điểm A nên :
- Thay x = 3, y = -1 và phương trình (d) ta được :
\(-1=3a+b\) ( I )
- Ta có : (\(\Delta\) ) : 2x + 3y - 1 = 0
=> \(y=-\frac{2x}{3}+\frac{1}{3}\)
- Mà đường thẳng (d) // ( \(\Delta\) ) nên : \(\left\{{}\begin{matrix}a=-\frac{2}{3}\\b\ne\frac{1}{3}\end{matrix}\right.\)
- Thay a = \(-\frac{2}{3}\) vào phương trình ( I ) ta được :
\(-1=3.\left(-\frac{2}{3}\right)+b\)
=> \(b=1\) ( tm )
- Thay \(a=-\frac{2}{3},b=1\) vào phương trình (d) ta được :\(y=-\frac{2x}{3}+1\)
Vậy phương trình đường thẳng (d) : \(y=-\frac{2x}{3}+1\)