HĐT số 4: \(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)
__________
\(x^3+3x^2+3x+1\)
\(=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3\)
\(=\left(x+1\right)^3\)
`x^3 +3x^2+3x+1`
`= x^3 + 3*x^2*1 +3*x*1^2 +1^3`
`=(x+1)^3`
x^3 + 3x^2 + 3x + 1
<=> x^3 + 3x^2.1 + 3x.1^2 + 1^3
<=> (x + 1) ^3