Qua điểm A nằm bên ngoài đường tròn 0, kẻ các tiếp tuyến AB, AC và cát tuyến ADE không đi qua tâm O (D, E thuộc đường tròn (O) và D nằm giữa AE). Vẽ OI vuông góc AE tại I a) cm: tứ giác OIBA nội tiếp b) cm: AD. AE = AC² c) Vẽ BC cắt OA tại K. cm: góc AKD = góc AEO cảm ơn mn
Từ điểm A cố định bên ngoài đường tròn (O) vẽ 2 tiếp tuyến AB,AC và cát tuyến ADE ko đi qua tâm O (D nằm giữa A và E ) đến (O) tiếp tuyến tại D của đường tròn cắt AB,AC lần lượt tại Mvaf N Gọi I là giao điểm của AO và BC . CMR : góc AID= góc OIE
Cho đường tròn tâm O. Từ điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA,MB với đường tròn( A,B các tiếp điểm) kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D ) a)C/M tứ giác MAOB nội tiếp b) C/M MA^2 =MC.MD c) Gọi H là giao điểm của AB và MO. CM tứ giác CHOD nội tiếp
từ đểm I nằm bên ngoài đường tròn kẻ cát tuyến IAB đến (O) không đi qua tâm O (A nằm giữa I và B), các tiếp tuyến tại A và B với (O) cắt nhau tại M. Kẻ MH vuông góc với OI tại H, tia MH cắt (O) tại C và D, AB cắt MO tại K. Chứng minh ID là tiếp tuyến của (O)
Cho Điểm A nằm ngoài đường tròn tâm O. Qua A kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm) và cát tuyến ACD (C nằm giữa A và D). Gọi I là trung điểm AB , lấy K đối xứng với A qua B. Chứng minh rằng tứ giác IKDC nội tiếp đường tròn
Từ 1 điểm A nằm bên ngoài đường tròn (O) vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tại M, cắt CD tại E và cắt tia phân giác của góc BAC tại H. Chứng minh rằng:
a) AH vuông góc BE
b) MD^2=MB.ME
Từ 1 điểm A nằm bên ngoài đường tròn (O) vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tại M, cắt CD tại E và cắt tia phân giác của góc BAC tại H. Chứng minh rằng:
a) AH vuông góc BE
b) MD^2=MB.ME