a:góc MBO+góc MAO=180 độ
=>OAMB nội tiếp
b: Xét ΔMCA và ΔMAD có
góc MAC=góc MDA
góc CMA chung
=>ΔMCA đồng dạng với ΔMAD
=>MA^2=MC*MD
a:góc MBO+góc MAO=180 độ
=>OAMB nội tiếp
b: Xét ΔMCA và ΔMAD có
góc MAC=góc MDA
góc CMA chung
=>ΔMCA đồng dạng với ΔMAD
=>MA^2=MC*MD
Từ một điểm M bên ngoài đường tròn (O) vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O), ở đây A, B là các tiếp điểm và C nằm giữa M, D.
a) Chứng minh MA2 = MC.MD ;
b) Gọi I là trung điểm của CD. Chứng minh rằng 5 điểm M, A, O, I, B cùng nằm trên một đường tròn ;
c) Gọi H là giao điểm của AB và MO. Chứng minh tứ giác CHOD nội tiếp được đường tròn. Suy ra AB là đường phân giác của góc CHD ;
d) Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). Chứng minh A, B, K thẳng hàng.
Bài 5. Cho đường tròn (O) và một điểm M nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB (A và B là tiếp điểm) và cát tuyến MNP (N nằm giữa M và P) với đường tròn . Gọi E là trung điểm của NP a) Chứng minh rằng năm điểm M, A, K, O, B cùng nằm trên một đường tròn, từ đó chứng minh KM là tia phân giác của AKB b) Gọi Q là giao điểm thứ hai của đường thẳng BK với đường tròn (O).Chứng minh AQ//NP c) Gọi H là giao điểm của AB và MO. Chứng minh rằng: MH.MO= MB2 ; MH.MO= MN.MP d) Chứng minh tứ giác NHOP nội tiếp e) Gọi E là giao điểm của AB và KO, F là giao điểm của AB và NP. CMR: AB2=4 HE.HF và tứ giác KEMH nội tiếp f) Chứng minh: EN, EP là các tiếp tuyến của (O)
Từ điểm M nằm ngoài đường tròn (O), vẽ tiếp tuyến MA đến (O) (với A là tiếp điểm) và vẽ cát tuyến MBC sao cho MB < MC và tia MC nằm giữa hai tia MA, MO. Gọi H là hình chiếu vuông góc của điểm A trên đường thẳng OM, gọi E là trung điểm của đoạn thẳng BC.
1. Chứng minh rằng O, E, A, M cùng thuộc một đường tròn
2. Chứng minh rằng MA2 = MB.MC
3. Chứng minh tứ giác BCOM nội tiếp và HA là tia phân giác của góc BHC
4. Đoạn thẳng OA cắt đường tròn (O) tại điểm I.
Chứng minh rằng S ΔBIM/S ΔBHI = BM/BH
Cho điểm M nằm ngoài đường tròn tâm O. Vẽ tiếp tuyến MA,MB với đường tròn (A,B là các tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O ( C nằm giữa M và D), OM cắt AB tại H. Chứng minh rằng
1, Tứ giác MAOB nội tiếp
2,\(\frac{MC}{MD}=\frac{AC^2}{AD^2}\)
3, HA là phân giác của góc CHD
Bài 4: Cho điểm M nằm ngoài đường tròn (O, R), kẻ các tiếp tuyến MA, MB (A, B là tiếp điểm) và cát tuyến MNP với (O) (MN <MP, MN nằm trong góc OMA).
a) Chứng minh: Tứ giác MAOB là tứ giác nội tiếp.
b) Chứng minh: MA=MN.MP
c) Gọi I là giao điểm của MO và AB. Chứng minh: Tích OI.OM không phụ thuộc vào vị trí của điểm M.
d) Kẻ ND vuông góc với OA tại D; ND cắt AP, AB theo thứ tự tại E và F. Chứng minh: F là trung điểm của NE.
Cho điểm M nằm ngoài đường tròn (O;R). Qua M vẽ hai tiếp tuyến MA, MB và cát tuyến MCD (A,B,C,D thuộc đường tròn tâm O), tia MC nằm giữa hai tia MO và MA. Gọi H là giao điểm của AB và MO.
a/ CM tứ giác MAOB nội tiếp.
b/ Gọi K là trung điểm CD. Chứng minh 5 điểm M, A, K, O, B cùng thuộc một đường tròn. Từ đó suy ra KM là phân giác của góc AKB.
c/ Đường thẳng OK cắt đường thẳng AB tại N. Chứng minh ND là tiếp tuyến đường tròn (O)
Cho đường tròn tâm O, bán kính R và M là một điểm nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi E là giao điểm của AB và OM.
a) Chứng minh tứ giác MAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và ME biết OM = 5cm và R = 3cm.
c) Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng góc MEC = góc OED
Đề thi tuyển sinh lớp 10 Bình Phước năm 2018
Câu 5 :(2 ,5 điểm)
Cho đường tròn tâm (O), từ điểm M ở bên ngoài đường tròn (O) kẻ các tiếp tuyến MA, MB(A, B là các tiếp điểm), kẻ cát tuyến MCD không đi qua tâm O(C nằm giữa M và D; O và B nằm hai phía so với cát tuyến MCD).
a) Chứng minh: Tứ giác MAOB nội tiếp
b) Chứng minh: \(MB^2=MC.MD\)
c) Gọi H là giao điểm của AB và OM.Chứng minh: AB là phân giác của \(\widehat{CHD}\)
Cho đường tròn tâm O bán kính R và điểm M nằm ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA, MB với đường tròn (A,B là hai tiếp tuyến) a) Chứng minh tứ giác MAOB là nội tiếp trong một đường tròn b) Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). Chứng minh hệ thức MA^2 = MC.MD c) Gọi H là trung điểm của dây CD. Chứng minh HM là tia phân giác của góc AHB giúp em với ạ em đang cần gấp