Từ điểm A ở ngoài đường tròn [O;R] vẽ hai tiếp tuyến AB;AC với đường tròn [B,C là tiếp điểm ]. Gọi H là chân đường vuông góc kẻ từ B đến đường kính CD.
a cm 4 điểm A,B,C,O cùng thuộc 1 đường tròn
b cm BD //OA
c i là giao điểm BH và AD. Cm i là trung điểm bh
Giúp em phần c với ạ!
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ các tiếp tuyến AB và AC đến (O) với B, C là tiếp điểm. Gọi H là giao điểm của BC với OA. Vẽ CD là đường kính của (O), AD cắt đường tròn (O) tại điểm thứ 2 là E. a) Chứng minh: ∆CED vuông tại E và OA vuông góc BC tại H b) Chứng minh AE. AD = AH. AO và AHE = ADO c) Gọi I là giao điểm của BC và DE. Chứng mình DHO = EHA và 1/AE + 1/AD = 2/AI
Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).
a) cm: A,B,O,C cùng thuộc một đường tròn.
b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.
c) cm: BC trùng với tia phân giác của góc DHE.
d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.
Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.
a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.
b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.
c) cm: BC là tia phân giác của góc ABH.
d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.
từ diểm a nằm ngoài đường tròn (o) vẽ tiếp tuyến ab,ac với đường tròn( b,c là tiếp điểm). kẻ đường kính bd của đường tròn(o), gọi h là giao điểm của oa và bc.a)chứng minh oa//cd.b)đường thẳng qua o vuông góc với ad tại e cắt đường thẳng bc tại i. Gọi k là gao điểm của ad và bc. Chứng minh hc^2=hk.hi và 2/bc=1/ck-1/ci
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn (O; R). Từ điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là trung điểm của BC
a, Chứng minh ba điểm A, H, O thẳng hàng và các điếm A, B, C, O cùng thuộc một đường tròn
b, Kẻ đường kính BD của (O). Vẽ CK vuông góc vói BD. Chứng minh AC.CD = CK.AO
c, Tia AO cắt đường tròn (O) tại M (M nằm giữa A và O). Chứng minh M là tâm đường tròn nội tiếp tam giác ABC
d, Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK
Cho đường tròn O nằm ngoài đường tròn O từ S kẻ hai tiếp tuyến Sa và SB với đường tròn O A,B là các tiếp điểm Gọi D là giao điểm của AO với SB, E là giao điểm của AB với SO. Vẽ AD cắt đường tròn O tại C. Kẻ BH vuông góc AC a. Chứng minh tứ giác SAOB nội tiếp. b. Chứng ming BC song song SO và BC là phân giác của góc HBD. c. Gọi F là giao điểm của SC và BH. Chứng minh F là trung điểm của BH ( giải giúp mình câu c thoi ạ! Cảm mơn ạ!)
Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a. Chứng AO vuông góc với BC
b. Chứng minh BC là phân giác góc ABH
c. Gọi I là giao điểm của AD và BH. Chứng minh IH=IB