a: PTHĐGĐ là
-x^2-x+2=0
=>x^2+x-2=0
=>(x+2)(x-1)=0
=>A(-2;-4); B(1;-1)
b: OA=căn (-2)^2+(-4)^2=2*căn 5
OB=căn 1^2+1^2=căn 2
AB=căn (1+2)^2+(-1+4)^2=3căn 2
vì OB^2+AB^2=OA^2
nên ΔOAB vuông tại B
S OBA=1/2*căn 2*2căn 5=căn 10
a: PTHĐGĐ là
-x^2-x+2=0
=>x^2+x-2=0
=>(x+2)(x-1)=0
=>A(-2;-4); B(1;-1)
b: OA=căn (-2)^2+(-4)^2=2*căn 5
OB=căn 1^2+1^2=căn 2
AB=căn (1+2)^2+(-1+4)^2=3căn 2
vì OB^2+AB^2=OA^2
nên ΔOAB vuông tại B
S OBA=1/2*căn 2*2căn 5=căn 10
Trong mặt phẳng tọa độ Oxy, cho Parabol (P):
y = x2 và đường thẳng (d): y = -x + 2
a) Tìm tọa độ giao điểm của (P) và (Q)
b) Gọi A, B là hai giao điểm của (P) và (Q). Tính diện tích tam giác OAB.
Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x^2 và đường thẳng (d) : y = -x + 2
a, Tìm tọa độ giao điểm của (P) và (d)
b, Gọi A,B là 2 giao điểm của (P) và (d). Tính diện tích tam giác OAB
Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y=x^2 và đường thẳng (d): y=-x+2
a, Vẽ đồ thị của 2 hàm số trên cùng 1 hệ trục tọa độ
b, Tìm tọa độ giao điểm của (P) và (d)
c, Gọi A,B là 2 giao điểm của (P) và (d). Tính diện tích tam giác OAB
Trên mặt phẳng tọa độ Oxy cho đường thẳng (d) : y = - x + 6 và parabol (P): y = x².
a, Tìm tọa độ các giao điểm của (d) và (P).
b, Gọi A, B là giao điểm của (d) và (P). Tính diện tích tam giác OAB.
Trong mặt phẳng tọa độ Oxy, cho parabol (P) y= x2 và đường thẳng (d): y=2x+3
Gọi A,B là tọa độ giao điểm của (d) và (P) . Tính diện tích tam giác OAB ( O là gốc tọa độ )
Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x^2 và đường thẳng (d) : y = -x + 2
a, Tìm tọa độ giao điểm của (P) và (d)
b, Gọi A,B là 2 giao điểm của (P) và (d)
c) Tính diện tích tam giác OAB
Chỉ cần trả lời câu c thôi ạ
Trong mặt phẳng tọa độ Oxy, cho Parabol \(y=x^2\) và đường thẳng y = -x + 2
a) Tìm tọa độ giao điểm của (P) và (Q)
b) Gọi A, B là hai giao điểm của (P) và (Q). Tính diện tích tam giác OAB.
Mình cần làm câu b ạ, mình cảm ơn nhiều!
Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = - x2
a) Vẽ parabol (P)
b) Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).
c) Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại M
Bài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
CMR: (d) luôn cắt (P) tại 2 điểm phân biệt
a) Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ x1; x2. Hãy tìm giá trị nhỏ nhất của biểu thức P =
khi m thay đổi
Bài 3. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt nằm bên phải trục tung
Bài 4. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
Bài 5. Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1
Tìm m sao cho (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 sao cho ![]()
Bài 6. Cho parabol (P) : y =
x2 và đường thẳng (d) : y = mx -
m2 + m +1.
a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho
.
Cho parabol P() : y = 2x2 và đường thẳng (d) : y = x + 1
a) Vẽ (P) và (d) trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm A và B của (P) và (d).
c) Tính diện tích tam giác OAB.
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) : y = ( k - 1 )x + n và hai điểm A(0;2),B(-1;0)
cho n = 2 . Tìm k để đường thẳng (d) cắt trục ox tại điểm C sao cho diện tích tam giác OAC gấp 2 lần diện tích tam giác OAB