Gọi \(I\left(x_0;y_0\right)\) là điểm thỏa mãn \(\overrightarrow{IA}+\text{}\overrightarrow{IB}=\overrightarrow{0}\)
Ta có \(\left\{{}\begin{matrix}1-x_0+2-x_0=0\\3-y_0+7-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_0=3\\2y_0=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\frac{3}{2}\\y_0=5\end{matrix}\right.\)
\(\Rightarrow I\left(\frac{3}{2};5\right)\)
Khi đó \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}\right|=\left|2\overrightarrow{MI}+\overrightarrow{0}\right|=2MI\)
Lại có \(\left|\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{CA}\right|=CA=\sqrt{\left(-1-2\right)^2+\left(3-7\right)^2}=5\)
Nên \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow2MI=5\Rightarrow MI=\frac{5}{2}\)
Vậy \(M\in\left(I;\frac{5}{2}\right)\)