Trong không gian với hệ tọa độ Oxyz , cho điểm I 1 ; 2 ; - 1 và mặt phẳng (α) có phương trình 2 x - 2 y - z + 4 = 0 . Mặt cầu (S) có tâm I tiếp xúc với (α) tại H. Tọa độ điểm H là
A. H 1 3 ; 8 3 ; - 2 3
B. H 23 3 ; 4 9 ; - 2 3
C. H 1 3 ; 8 3 ; - 1 3
D. H - 1 3 ; 8 3 ; - 2 3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng α có phương trình. 2 x + 2 y − z − 8 = 0. Xét mặt cầu S : x 2 + y 2 + z 2 − 2 x + 4 y − z + m = 0 , với m là tham số thực. Biết mặt phẳng α cắt mặt cầu (S) theo giao tuyến là một đường tròn (C) có bán kính bằng 2. Tìm tất cả các giá trị của m thỏa mãn điều kiện trên.
A. m = − 18
B. m = 21 4
C. m = 27 2
D. m = − 11
Trong không gian với hệ trục tọa độ O x y z , cho điểm I 1 ; − 1 ; 1 và mặt phẳng α : 2 x + y − 2 z + 10 = 0 . Mặt cầu S tâm I tiếp xúc α có phương trình là:
A. S : x − 1 2 + y + 1 2 + z − 1 2 = 1
B. S : x − 1 2 + y + 1 2 + z − 1 2 = 9
C. S : x + 1 2 + y − 1 2 + z + 1 2 = 3
D. S : x + 1 2 + y − 1 2 + z + 1 2 = 1
Trong không gian Oxyz cho mặt cầu (S): x 2 + y 2 + z 2 − 2 x + 4 y − 16 = 0 và hai đường thẳng Δ 1 : x − 1 2 = y + 4 − 3 = z 2 và Δ 2 : x + 1 1 = y − 2 1 = z − 1 − 1 .Viết phương trình mặt phẳng α song song với Δ 1 , Δ 2 , tiếp xúc với mặt cầu (S) và cắt trục Oz tại điểm có cao độ dương.
A. x − 4 y + 5 z − 7 − 21 2 = 0
B. x − 4 y + 5 z + 7 − 21 2 = 0
C. x + 4 y + 5 z − 7 − 21 2 = 0
D. x + 4 y + 5 z + 7 − 21 2 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 − 2 x + 6 y − 4 z − 2 = 0 , mặt phẳng α : x + 4 y + z − 11 = 0. Gọi (P) là mặt phẳng vuông góc với α , P song song với giá của vecto v → 1 ; 6 ; 2 v à P tiếp xúc với (S). Lập phương trình mặt phẳng ( P ).
A. 2 x − y + 2 z − 2 = 0 và x − 2 y + z − 21 = 0
B. x − 2 y + 2 z + 3 = 0 và x − 2 y + z − 21 = 0
C. 2 x − y + 2 z + 3 = 0 và 2 x − y + 2 z − 21 = 0
D. 2 x − y + 2 z + 5 = 0 và x − 2 y + 2 z − 2 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;1;1) và mặt phẳng ( α ) : x + y + z - 4 = 0 và mặt cầu ( S ) : x 2 + y 2 + z 2 - 6 x - 6 y - 8 z + 18 = 0 . Phương trình đường thẳng d đi qua M và nằm trong mặt phẳng ( α ) cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất là
A. △ : x - 2 1 = y - 1 - 2 = z - 1 1
B. △ : x + 2 1 = y + 1 - 2 = z + 1 1
C. △ : x - 2 1 = y - 1 2 = z - 1 - 3
D. △ : x - 2 1 = y - 1 - 2 = z - 1 - 1
Trong không gian tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + 4 x - 6 y + m = 0 và đường thẳng ∆ là giao tuyến của hai mặt phẳng α : x + 2 y - 2 z - 4 = 0 và β : 2 x - y - z + 1 = 0 . Đường thẳng ∆ cắt mặt cầu (S) tại hai điểm phân biệt A, B thỏa mãn A B = 8 khi:
A. m = 12
B. m = -12
C. m = -10
D. m = 5
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng α : x + y - z + 1 = 0 v à β : - 2 x + m y + 2 z - 2 = 0 . Tìm m để mặt phẳng (α) song song với mặt phẳng (β).
A. m = 2
B. m = 5
C. Không tồn tại
D. m = -2