Đáp án A
Tọa độ điểm H là hình chiếu vuông góc của I lên mặt phẳng (α). Do IH⊥(α) nên IH có phương trình tham số
Tọa độ điểm H là nghiệm của hệ phương trình
Đáp án A
Tọa độ điểm H là hình chiếu vuông góc của I lên mặt phẳng (α). Do IH⊥(α) nên IH có phương trình tham số
Tọa độ điểm H là nghiệm của hệ phương trình
Trong không gian với hệ trục tọa độ O x y z , cho điểm I 1 ; − 1 ; 1 và mặt phẳng α : 2 x + y − 2 z + 10 = 0 . Mặt cầu S tâm I tiếp xúc α có phương trình là:
A. S : x − 1 2 + y + 1 2 + z − 1 2 = 1
B. S : x − 1 2 + y + 1 2 + z − 1 2 = 9
C. S : x + 1 2 + y − 1 2 + z + 1 2 = 3
D. S : x + 1 2 + y − 1 2 + z + 1 2 = 1
Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;2;3) và mặt phẳng P : 2 x − 2 y − z − 4 = 0 . Mặt cầu tâm I tiếp xúc với (P) tại điểm H. Tìm tọa độ H.
A. H − 1 ; 4 ; 4 .
B. H − 3 ; 0 ; − 2 .
C. H 3 ; 0 ; 2 .
D. H 1 ; − 1 ; 0 .
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ tọa độ Oxyz, cho điểm
A 1 ; 3 ; - 2 và mặt phẳng (P) có phương trình
( P ) : 2 x - y + 2 z - 1 = 0 . Viết phương trình mặt cầu (S)
có tâm A và tiếp xúc với mặt phẳng (P). Tọa độ tiếp
điểm là:
A. H 7 3 ; 7 3 ; - 2 3
B. H 1 3 ; 1 3 ; - 2 3
C. H 7 3 ; - 7 3 ; 2 3
D. H 7 3 ; 7 3 ; 2 3
Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2;-3). Tìm phương trình mặt phẳng α cắt các trục tọa độ Ox, Oy, Oz lần lượt tại 3 điểm A, B, C sao cho H là trực tâm tam giác ABC.
A. α : x+2y-3z-14=0
B. α : x+2y-3z+4=0
C. α : 6x+3y-2z-18=0
D. α : 6x+3y-2z+8=0
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + y 2 + ( z - 2 ) 2 = 9 . Mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A ( 1 ; 3 ; 2 ) có phương trình là
A . x + y - 4 = 0
B . y - 3 = 0
C . 3 y - 1 = 0
D . x - 1 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm I(1; 2; 1) và mặt phẳng (P): 2x - y + 2z - 7 = 0. Viết phương trình mặt cầu (S) có tâm I và tiếp xúc với (P).
A . ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 3
B . ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 9
C . ( S ) : ( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 1 ) 2 = 3
D . ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 9
Trong không gian với hệ tọa độ Oxyz, cho điểm H(a;b;c) với a,b,c là các số thực thay đổi thoả mãn ab+bc+ca=-1. Mặt phẳng ( α ) qua H và cắt các trục Ox,Oy,Oz lần lượt tại A, B,C sao cho H là trực tâm của tam giác ABC. Mặt cầu tâm O tiếp xúc với (α) có bán kính nhỏ nhất bằng
A. 1.
B. 2.
C. 2 .
D. 3 .
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;4;2) và mặt phẳng α : x + y + z - 1 = 0 . Tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng α là:
A. (2;-1;0)
B. (-1;2;0)
C. (-1;0;2)
D. (0;-1;2)