Trong không gian Oxyz, cho mặt phẳng α : 2 x + 3 y - 2 z + 12 = 0 . Gọi A, B, C lần lượt là giao điểm của α với 3 trục tọa độ, đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC và vuông góc với α có phương trình là
A. x + 3 2 = y + 2 3 = z - 3 - 2
B. x + 3 2 = y - 2 - 3 = z - 3 2
C. x + 3 2 = y - 2 3 = z - 3 - 2
D. x - 3 2 = y - 2 3 = z + 3 - 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm G 1 ; 2 ; 3 . Mặt phẳng α đi qua G cắt Ox,Oy,Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng α .
A. α : x 3 + y 6 + z 9 = 1
B. α : x 2 + y 4 + z 6 = 1
C. α : x 3 + y 2 + z 1 = 1
D. α : x 1 + y 2 + z 3 = 1
Trong không gian với hệ tọa độ Oxyz, cho điểm H(a;b;c) với a,b,c là các số thực thay đổi thoả mãn ab+bc+ca=-1. Mặt phẳng ( α ) qua H và cắt các trục Ox,Oy,Oz lần lượt tại A, B,C sao cho H là trực tâm của tam giác ABC. Mặt cầu tâm O tiếp xúc với (α) có bán kính nhỏ nhất bằng
A. 1.
B. 2.
C. 2 .
D. 3 .
Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;2;3). Mặt phẳng đi qua G cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng α
A. α : x 2 + y 4 + z 6 = 1
B. α : x 3 + y 2 + z 1 = 1
C. α : x 1 + y 2 + z 3 = 1
D. α : x 3 + y 6 + z 9 = 1
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong hệ tọa độ Oxyz, cho P : x + 4 y - 2 z - 6 = 0 , Q : x - 2 y + 4 z - 6 = 0 . Lập phương trình mặt phẳng α chứa giao tuyến của (P), (Q) và cắt các trục tọa độ tại các điểm A, B, C sao cho O.ABC là hình chóp đều.
A. x + y + z - 6 = 0
B. x + y - z - 6 = 0
C. x + y + z - 3 = 0
D. x + y + z + 6 = 0
Trong không gian với hệ tọa độ Oxy cho mặt phẳng α : 2 x - y - 3 z = 4 . Gọi A ,B ,C lần lượt là giao điểm của mặt phẳng α với các trục tọa độ Ox, Oy, Oz. Thể tích tứ diện OABC bằng:
A. 1.
B. 2.
C. 32 9
D. 16 9
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng α : x + 2 y - 3 z - 3 = 0 . Gọi M là giao điểm của d với α , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng α
A. 2
B. 3.
C. 6
D. 14
Trong không gian Oxyz, cho hai mặt phẳng P : x - 3 y + 2 z - 1 = 0 , Q : x - z + 2 = 0 . Mặt phẳng α vuông góc với cả (P) và (Q) đồng tời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của α là
A. x + y + z - 3 = 0
B. x + y + z + 3 = 0
C. - 2 x + z + 6 = 0
D. - 2 x + z - 6 = 0