Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x - 1 1 = y - 2 - 1 = z - 1 2 và mặt phẳng P : x + 2 y + z - 5 = 0 . Tọa độ giao điểm A của đường thẳng ∆ và mặt phẳng (P) là:
A. A(3;0;-1)
B. A(0;3;1)
C. A(0;3;-1)
D. A(-1;0;3)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x = 1 - t y = 2 t z = 2 + 2 t và mặt phẳng P : x + y - z - 1 = 0 . Giao điểm M của d và (P) có tọa độ là
A. M(1;0;2)
B. M(3;-4;-2)
C. M(0;2;4)
D. M(1;1;1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y - 2 z - 1 = 0 và đường thẳng d : x - 2 1 = y - 2 1 = z - 2 . Tọa độ giao điểm của d và (P) là
A. 3 2 ; 3 2 ; 1
B. (1;0;0)
C. (2;2;0)
D. 3 ; 3 ; 5 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P = x + y + z − 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z − 2 − 1 . Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
A. x + 1 1 = y + 1 2 = z + 1 7
B. x + 1 1 = y + 1 − 2 = z + 1 7
C. x − 1 1 = y − 1 2 = z − 1 7
D. x − 1 1 = y − 1 − 2 = z − 1 7
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B(-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là
A. u → = 1 ; - 1 ; 0
B. u → = 2 ; 3 ; - 1
C. u → = 1 ; - 2 ; 0
D. u → = 3 ; - 2 ; - 3
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x = 1 − t y = 2 t z = 2 + 2 t , t ∈ ℝ và mặt phẳng P : x + y − z − 1 = 0 . Giao điểm M của d và (P) có tọa độ là
A. M 1 ; 1 ; 1
B. M 0 ; 2 ; 4
C. M 1 ; 0 ; 2
D. M 3 ; − 4 ; − 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + y + z - 7 = 0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
A. (Q): 5x+y-6z+7=0
B. (Q): 5x-y-6z+7=0
C. (Q): 5x+y-6z-7=0
D. (Q): 5x-y-6z+-=0