Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-y+6z+m=0 và cho đường thẳng d có phương trình x - 1 2 = y + 1 - 4 = z - 3 - 1 . Tìm m để d nằm trong (P).
A. m = –20.
B. m = 20
C. m = 0
D. m = –10
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y 1 = z + 1 3 và mặt phẳng ( Q ) : 2 x + y - z = 0 . Mặt phẳng (P) chứa đường thẳng d và vuông góc với mặt phẳng (Q) có phương trình là:
A. ( P ) : - x + 2 y - 1 = 0
B. ( P ) : x - y - z = 0
C. ( P ) : x - 2 y - 1 = 0
D. ( P ) : x + 2 y + z = 0
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng P : x - y + z + 3 = 0 , Q : x + 2 y - 2 z - 5 = 0 và mặt cầu S : x 2 + y 2 + z 2 - 2 z + 4 y - 6 z - 11 = 0 . Gọi M là điểm di động trên (P) sao cho MN luôn vuông góc với (Q). Giá trị lớn nhất của độ dài đoạn thẳng MN bằng
A. 9 + 5 3
B. 28
C. 14
D. 3 + 5 3
Trong không gian với hệ tọa độ Oxyz, cho A(1;-1;2); B(2;1;1) và mặt phẳng (P): x+y+z+1=0. Mặt phẳng (Q) chứa A,B và vuông góc với mặt phẳng (P). Mặt phẳng (Q) có phương trình là
A. 3x-2y-z-3=0
B. x+y+z-2=0
C. –x+y=0
D. 3x-2y-z+3=0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y + z + 1 = 0 và hai điểm A 1 ; - 1 ; 2 , B 2 ; 1 ; 1 . Mặt phẳng Q chứa A, B và vuông góc với mặt phẳng P . Mặt phẳng Q có phương trình là:
A. - x + y = 0
B. 3 x - 2 y - z + 3 = 0
C. x + y + z - 2 = 0
D. 3 x - 2 y - z - 3 = 0
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm A(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
A. 4x + 5y – 3z + 22 = 0.
B. 4x – 5y – 3z -12 =0
C. 2x + y – 3z – 14 = 0.
D. 4x + 5y – 3z – 22 = 0
Trong không gian Oxyz, cho mặt phẳng P : x - y + 6 z + m = 0 và cho đường thẳng d có phương trình x - 1 2 = y + 1 - 4 = z - 3 - 1 . Để d nằm trong (P) thì
A. m = -20
B. m = 20
C. m = 0
D. m = -10
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x–y+z -1= 0 và (Q):2x+y+1= 0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
A. x+2y+3z+7=0.
B. x-2y+3z+3=0.
C. x+2y-3z–5=0.
D. x–2y–3z-9=0.
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng Q chứa đường thẳng d : x = y x - 2 y + z = 0 và vuông góc với mặt phẳng P : 2 x + y - 1 = 0 .
A. Q : x + 2 y - z + 1 = 0
B. Q : - x + 2 y + z - 1 = 0
C. Q : - x + 2 y - z + 1 = 0
D. Q : - x + 2 y - 2 z + 2 = 0