Gọi I là trung điểm của BC. Ta chứng minh được
Suy ra I là hình chiếu của A 1 trên BC nên I(0;0;1)
Chọn VTCP của
Chọn D.
Gọi I là trung điểm của BC. Ta chứng minh được
Suy ra I là hình chiếu của A 1 trên BC nên I(0;0;1)
Chọn VTCP của
Chọn D.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;1;2), M(3;0;0) và mặt phẳng (P):x+y+z-3=0. Đường thẳng ∆ đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ điểm A đến đường thẳng ∆ là nhỏ nhất. Gọi u → = a , b , c là vectơ chỉ phương của ∆ với a, b, c là các số nguyên có ước chung lớn nhất bằng 1. Tính giá trị T=a+b+c.
A. T = -1
B. T = 1.
C. T = 0.
D. T = 2.
Trong không gian với hệ tọa độ Oxyz, biết M(a,b,c) (với a > 0) là điểm thuộc đường thẳng Δ : x 1 = y + 2 − 1 = z − 1 2 và cách mặt phẳng P : 2 x − y + 2 z − 5 = 0 một khoảng bằng 2. Tính giá trị của T=a+b+c
A. T = -1
B. T = -3
C. T = 3.
D. T = 1.
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3;2;4) và đường thẳng d : x + 3 2 = y − 1 − 2 = z + 3 . Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz và M'(a;b;c) là hình chiếu song song của điểm M theo phương d lên mặt phẳng (ABC). Giá trị của biểu thức T = a + 2 b + 1 2 c là:
A. T = − 3.
B. T = 17 2 .
C. T = 15 17 .
D. T = 3 2 .
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3;2;4) và đường thẳng d : x + 3 2 = y − 1 − 2 = z + 3 . Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz và M'(a;b;c) là hình chiếu song song của điểm M theo phương d lên mặt phẳng (ABC). Giá trị của biểu thức T = a + 2 b + 1 2 c là:
A. T = − 3.
B. T = 17 2 .
C. T = 15 17 .
D. T = 3 2 .
Trong không gian tọa độ với hệ tọa độ Oxyz, cho ba điểm A(1;2;-1), B(2;-1;3) và C(-3;5;1). Gọi điểm D(a;b;c) thỏa mãn tứ giác ABCD là hình bình hành. Tính tổng T = a + b + c.
A. T = 1.
B. T = 5.
C. T = 3.
D. T = -1.
Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm A(1;-2;3) và B(0;1;2). Đường thẳng d đi qua 2 điểm A, B có một vectơ chỉ phương là:
A. u ⇀ 1 = ( 1 ; 3 ; 1 )
B. u ⇀ 2 = ( 1 ; - 1 ; - 1 )
C. u ⇀ 3 = ( 1 ; - 1 ; 5 )
D. u ⇀ 4 = ( 1 ; - 3 ; 1 )
Trong không gian với hệ tọa độ Oxyz, cho điểm M(a;b;c), (a > 0) thuộc đường thẳng d : x − 3 = y + 2 − 1 = z − 1 2 . Hình chiếu song song của điểm M trên mặt phẳng P : x + 5 y − 2 = 0 theo phương của đường thẳng Δ: x = 3 − t y = 1 + 2 t z = − 3 t là điểm M’ sao cho MM ' = 14 . Tính giá trị của biểu thức T = a + b + c là:
A. 0
B. 1
C. 2
D. 3
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng
d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A a ; 0 ; 0 , A ' 0 ; 0 ; b . Gọi (P) là mặt phẳng chứa d và d '; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng ∆ thay đổi trên (P) nhưng luôn đi qua H đồng thời ∆ cắt d và d ' lần lượt là B, B '. Hai đường thẳng AB, A'B' cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có vectơ chỉ phương u → = 15 ; - 10 ; - 1 (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = - 9
D. T = 6
Trong không gian với hệ toạ độ Oxyz, cho ba đường thẳng d 1 : x 1 = y - 1 2 = z + 1 - 1 ; d 1 : x - 1 2 = y + 1 1 = z - 2 ; x = 3 y = 1 - 3 t z = 4 t .Đường thẳng d có véctơ chỉ phương u ⇀ = a ; b ; - 2 cắt d 1 , d 2 , d 3 lần lượt tại A, B, C sao cho B là trung điểm của đoạn thẳng AC. Tính T = a + b
A. T = 15
B. T = 8
C. T = - 7
D. T = 13