Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y + z - 1 = 0 và hai điểm A ( 1;-3;0 ), B ( 5;-1;-2 ). Điểm m ( a;b;c ) trên mặt phẳng (P) sao cho M A - M B đạt giá trị lớn nhất. Tính tổng a + b + c
A. 1
B. 11
C. 5
D. 6
Trong không gian với hệ tọa độ Oxyz, cho điểm A 5 ; - 2 ; 2 , B 3 ; - 2 ; 6 . Điểm M a ; b ; c nằm trên mặt phẳng P : 2 x + y + z - 5 = 0 sao cho M A = M B mà M A B ^ = 45 ° . Biết a < 9 4 , tính a - b - c
A. a - b - c = 3
B. a - b - c = - 3
C. a - b - c = 0
D. a - b - c = 1
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;1;0),B(0;1;1),C(2;1;2) và mặt phẳng (P):x+y-z-6=0. Điểm M(a;b;c) thuộc (P) sao cho M A 2 + M B 2 + M C 2 đạt giá trị nhỏ nhất. Giá trị biểu thức ab+bc+ca bằng
A. 16 3
B. 80 9
C. 32 3
D. 32 9
Trong không gian với hệ toạ độ Oxyz, cho điểm A(-3;-1;3) và đường thẳng d: x - 1 3 = y - 1 2 = z - 5 2 , mặt phẳng (P):x+2y-z+5=0. Đường thẳng Δ qua A và cắt d tại điểm B(a;b;c) và tạo với mặt phẳng (P) góc 30 ° . Tính T=a+b+c.
A. T = 14
B. T = 0
C. T = 21
D. T = 7
Trong không gian với hệ tọa độ cho mặt phẳng ( P ) : x + y + z - 1 = 0 và hai điểm A 1 ; - 3 ; 0 , B 5 ; - 1 ; - 2 . Điểm M a ; b ; c trên mặt phẳng (P) sao cho M A - M B đạt giá trị lớn nhất. Tính tổng S = a + b
A. 1
B. 11
C. 5
D. 6
Trong không gian với hệ tọa độ Oxyz cho A(-3;0;0), B(0;0;3), C(0;-3;0) và mặt phẳng P : x + y + z − 3 = 0. Tìm trên (P) điểm M sao cho M A → + M B → − M C → nhỏ nhất
A. M(3;3;-3)
B. M(-3;-3;3)
C. M(3;-3;3)
D. M(-3;3;3)
Trong không gian với hệ trục tọa độ Oxyz, cho A(-3;0;0), B(0;0;3), C(0;-3;0) và mặt phẳng ( P ) : x + y + z - 3 = 0 . Tìm trên (P) điểm sao cho M A → + M B → - M C → nhỏ nhất.
A. M(3;3 ;-3)
B. M(-3;-3 ;3)
C. M(3;-3 ;3)
D. M(-3;3 ;3)
Trong không gian với hệ toạ độ Oxyz, cho điểm A - 3 ; - 1 ; 3 và đường thẳng d : x - 1 3 = y - 1 2 = z - 5 2 mặt phẳng ( P ) : x + 2 y - z + 5 = 0 Đường thẳng ∆ qua A và cắt d tại điểm B a ; b ; c và tạo với mặt phẳng (P) góc 30 0 . Tính T = a + b + c
A. T = 14
B. T = 0
C. T = 21
D. T = 7
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;0), B(-3;2;-4) và mặt phẳng P : x + 2 y + z − 3 = 0 . Gọi M(a,b,c) là điểm thuộc mặt phẳng (P) sao cho tam giác MAB cân tại M và có diện tích nhỏ nhất. Tính giá trị T = a 2 + b + c .
A. T = 1.
B. T = 2.
C. T = 0.
D. T = 3.