Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 10 ; 6 ; − 2 , B 5 ; 10 ; − 9 và mặt phẳng có phương trình α : 2 x + 2 y + z − 12 = 0. Điểm M di động trên mặt phẳng α sao cho MA, MB tạo với α các góc bằng nhau. Biết rằng M thuộc đường tròn ω cố định. Hoành độ của tâm đường tròn ω là:
A. 9 2 .
B. 2
C. 10
D. 4
Đáp án B.
Gọi M x ; y ; z
⇒ A M → = x − 10 ; y − 6 ; z + 2 ; B M → = x − 5 ; y − 10 ; z + 9
Gọi H, K lần lượt là hình chiếu của A, B lên
có A M H ^ = B M K ^ .
Khi đó sin A M H ^ = A H M A sin B M K ^ = B K M B
⇒ A H M A = B K M B ⇒ M A = 2 M B ⇔ M A 2 = 4 M B 2 .
Suy ra
x − 10 2 + y − 6 2 + z + 2 2 = 4 x − 5 2 + y − 10 2 + z + 9 2
⇔ x 2 + y 2 + z 2 − 20 3 x − 68 3 y + 68 3 z + 228 = 0 ⇔ S : x − 10 3 2 + y − 34 3 2 + z − 34 3 2 = R 2 .
Vậy M ∈ C là giao tuyến của α và S
→ Tâm I 2 ; 10 ; − 12 .